
TIPS 'N' TRICKS

Rational Arithm.etic

by Winfried Gerum

Arithmetic on computers can be
surprisingly unreliable. The rem
edy is using rational arithmetic.
To avoid cumbersome function
calls, M operators are over
loaded to support rational arith
metic.

These machines handle sound,
graphics, text, and occasionally
some arithmetic. And despite
the wide array of uses, we still
call them computers. Most of us
probably think that computing is
what these devices excel in.

Contrary to popular belief, these
computers can be awfully bad at
computing. Even if the processor
does not have some unintended fea
tures (does anyone remember the
flawed Pentium processors?). As
long as we do integer arithmetic with
small values there is no problem: all
values are exact. When it comes to
large values or to non-integer values,
your system may be good for some -
surprises. For example, with MSM
3.0.8 you get:

> WRI'IE 36028797018963968*2
; WRI'IE (2**55)*2
72057594037927930

instead of: 72057594037927936

and even:

> SEI' X=2**266 WRI'IE X*2=X
1

instead of: o
A power of two cannot yield a value
euding with zero, and doubling a

32 At COMPUTING

non-zero value should really give
you a different value. The results
of these computations are
wrong! But it seems to be widely
accepted behavior. What is
behind it? Obviously the internal
representation in MSM is a
floating point number that has a
limited number of bits to repre
sent mantissa and exponent.

These numbers are well above
the U.S. national debt (approx.
2**49 cents). So if no one cares
about the national debt, why
worry about much bigger num
bers; unless, of course, you are a
number scientist, an astronomer,
or a physicist.

Then consider computations as
simple as (l/N)*N with N being
an integer value. Obviously the
result should always be one. But
that's not true on computers!
Computing this expression on
MSM (3.0.8) for integers N from
1 through 1,000,000, I got the
correct value only 100 times.

Result (1/N) *N # of Occu=ences

.9999999999999998 6603

.9999999999999999 993297

1 100

Note that not a single result is
above one. So in this case, over a
long series of computations, the
errors will not cancel each other

Winfried Gerum -

out. Too much fuss about such a
small difference? You don't have
to be a chaos theorist to see the
significance that very small
changes can effect. It makes all
the difference whether the deter
minant of a system of linear
equations is zero or not. A non
zero value indicates that a solu
tion exists. A zero value tells you
that there is no solution.
Therefore, a small value for the
determinant should leave you in
doubt, whether the solution is
real or bogus!

There are some very common M
functions and operators that are
extremely sensitive to small devi
ations. Among them are the
comparisons: numbers that ·are
"almost equal" are in fact differ
ent:

> SET

X=".9999999999999998",Y=l

> WRITE A<Y

1

> WRITE A=Y

0

The Boolean interpretation of a
string treats a value that is "almost
zero" as different from zero (TRUE
instead of FAISE). Mapy M opera
tions use the integer interpretations
on some of their arguments. The fol
lowing operation discards all digits to
the right of the decimal point! So
"5.9999999999999998" becomes
five, not six.

March 1996

> SET X=5.9999999999999998,Y=6

> WRITE "X => ", $L ($J ("", X))

x => 5

> WRITE "Y => " , $L ($J ("" , Y))

y => 6

Is there a remedy short of going
back to pencil and paper? Yes,
because pencil and paper meth
ods can be done reliably with ...
a computer.

Since old FORTRAN times we
have called non-integer numbers
REAL. But they are not at all
what a mathematician calls a real
number. REAL is meant to be an
approximation to real numbers.
But they do not even qualify as
rational numbers (the set of all
fractions of integer numbers).
The REAL numbers are just a
subset of rational numbers: they
are decimal or binary fractions
with a limited number of decimal
(or binary) digits.

The problem comes with using
the decimal system (or an equiv
alent) to represent numbers. A
simple fraction like 1/3 cannot be
represented with a finite number
of decimal (or binary) digits.
Whatever number of digits you
choose, it has to be finite.
Therefore the decision to use the
decimal (or binary) system forces
you to cut off at some point. This
cutoff process introduces an
error. Adding and multiplying
floating point numbers may pro
duce more digits (bits) than a
word can hold, forcing again a
truncation or rounding process.

If you accumulate enough small
quantities, you can get any large
quantity. A few years ago the
Toronto stock exchange was
computerized. They put up a dis
play with their index. With each
relevant transaction the index

March 1996

was updated in a continuous
fashion. Over the course of some
months, the index display indi
cated a severe bias - contrary
to the general mood of the
exchange. A recalculation of the
index revealed that the display
became increasingly out of sync
with the original definition of the
index because of a systematic
loss with each computation.

Repeating a calculation with
double precision or using a sys
tem with interval arithmetic may
give you an idea of just how
wrong a result is. But it is no real
cure.

A way out of the dilemma is to
compute with fractions of (arbi
trary length) integers. Then
operations using addition, sub
traction, multiplication or divi
sion will not introduce an error.
A number is represented by a
pair of integers called counter
and denominator. Addition of
two fractions goes like this:

Cl C2 C1D2 + C2D1

-- + --

Dl D2 D1D2

The fractions can be normalized
by allowing a minus sign on the
counter only and by dividing
them by their greatest common
divisor. Normalizing them helps
to avoid very large numbers as
counter or denominator.

Calculation of the greatest com
mon divisor:

;greatest canmon divisor of

; two integers

(J])(A,B) ;

NC

S:$E(A)="-" $E(A)=""

S:$E(B)="-" $E(B)=""

F S:A>B C---A,A-=B,B=C Q: 'A D

.S B=B#A

QB

When doing complex calcula
tions in this way, if you get inter
mediate integers with more than
fifteen digits, you should not
trust the built-in math capabili
ties of your system. However, it
is possible to do arithmetic in a
pencil and paper fashion up to
the string length limit of your
system. For example, "arbitrary"
length addition:

.. ;ad:1 tv\O arl:iib:al:y l~ integers
ad:1(A,B) N C,I,R,SA.,SB,Y

S R---A,SZ\:=$E{R)="-" S:SA. $E(R)=""

S Y=B,SB=$E(Y)="-" S:SB $E(Y)=""

S I=$S($L(R)>$L{Y) :$L(R) ,1:$L(Y))

S R=$J(R,I),Y=$J(Y,I),C=0

S:SA.>SB R=$IR(R," 0123456789",

99876543210) ,C=l

S:SA.<SB Y=$IR(Y," 0123456789":

99876543210),C=l

F I=I:-1:1 D

.S C=C+$E(R,I)+$E(Y,I)

.S $E(R,I)=$E(C,$L(C)) ,$E(C,$L(C))=

D:SA.-SB

.IC SC='"'

.E S R='IR(R, "0123456789",

9876543210),SZ\:=l,SB=l

.F I=l:l:$L(R) I $E{R,I) S $E(R,l,I-

1)="" Q

.I I=$L{R) ,R?l. "0" S R=O

.Q:SA.'=SB s C=l

.F I=$L(R) :-1:1 S GC+$E(R,I),$E(R,I)=

Cli10, CC\10 Q: 'C

S:C R=C_R

I SA.,SB S R="-"_R

QR

Routines for multiplication, inte
ger division, and modulo can be
written in a similar way.

Then you can combine all these
functions into a library of subrou
tines. But you probably will never
use them. Even with expressions of
modest complexity it is very cum
bersome to write down all these
subroutine calls. Reading such a

.M COMPUTING 3 3

program is as difficult as writing it.
It would be nice to write down
expressions the usual way and let the
usual operators perform this rational
arithmetic magic! The language stan
dard does not prohibit your imple
mentor from providing such clean
math capabilities. If you can't con
vince them with money, logic or arm
twisting, sit down and write your own
expression evaluator in a few lines of
M code. Then instead of writing:

SEI' X=$$ADD ($$MULTIPLY

($$ADD(A,B) ,D), "3/7")

you write:

SEI' X=$$EXPR(" (A+B) *Dt-(3/7) ")

Typed programming languages
provide at least some operator
overloading. But usually it just
means that + , - , * , and I
can be applied to INTEGER,
REAL, DOUBLE, and possibly
COMPLEX numbers. Few pro
gramming languages (e.g. ADA)
provide a mechanism for user
defined operator overloading.

This expression evaluator makes
operator overloading available in M. ·
It can easily be modified to overload
the M operators to do·complex math
operations. Note that M indirection
is essential to the working bf this
algorithm. All M variables except a
few (?1" %"1U used by these func
tions internally) can be l.lsed in these
expressions.

But let us first have a look at a1i
example with a' system of linear
equations:

' ,.

332x1 + 301xz + 1157x3 + l06x4 =: 1
156x1 + 1079"2 + 35x3 + 22x4 = 1

239x1 + 979x2 + 817x3 + 85x4. = 1

343x1 + -217x3 ~ 715;x:3 · + 64x4 ,= 1

34 At COMPUTING

;evaluate M expression of rational entities

EXPR(%X) N %A,%B,%C,%I,%J,%0,%Q,%R,%U S

(%B,%J,%0,%Q,%R)="",%U=l

F %I=l:l:$L(%X)+l S %C=$E(%X,%I) D

.I %U F Q:%C="+" ! (%C="-")' ! (%X='"") S %I=%I+l,%C=$E(%X,%I)

.S:%C="""" %Q='%Q Q:%Q

.S:%C="(" %B=%B+l S:%C=")" %B=%B-l Q:%B

.I %C="'","=><&!?"[$E(%X,%I+l) S %C=%C_:$E(%X,%I+l),%I=%I+l

.I %C="*",$E(%X,%I+l)="*" S %C="**",%I=%I+l

.S %U="+-**/_'='<'>'&'!'?"[%C Q: '%U

.S %A=$E(%X,%J,%I-$L(%C))

.S %R=$S(%R="":%A,1:$$0P(%R,%0,%A)),%0::0%C,%J=%I+l

Q:%0="" $$EXPRA(%R)

Q $$0P(%R,%0,%A)

;evaluate M expr_atom

EXPRA(%X) Q:%X?l" ("1.El")" $$EXPR($E(%X, 2, $L (%X) -1))

Q: %X?. l"-" .Nl" /"l .N %X.

Q:%X?l"-"1.E $$MUL($$EXPR($E(%X,2,$L(%X))) ,-1)

Q:%X?l"+"l.E $$MUL($$EXPR($E(%X,2,$L(%X))) ,1)

Q:%C?l"' "l .E '$$EXPRA($E (%X, 2, $L (%X)))

Q:$P(%X,"(")?1"%"1U "<cannot handle"_%x_">"

Q:%X?.1"""1A.AN @%X

Q:%X?.1"""1"%" .AN @%X

Q:%X? .l"""lA.ANl" (".El")" @%X

Q: %X? .1"""1"%" .ANl" (".El")" @%X

Q:%X?l"$"1.E @%X ;svn, ssvn, functions

Q:%X?l""""l.E @%X ;strings

Q %X

;evaluate binary operators

. OP(%A,%0,'%B) S %A=$$EXPRA(%A) ,%B=$$EXPRA(%B)

Q: %0="+" $$ADD (%A, %B)

Q:%0="-" $$SUB(%A,%B)

Q:%0="*" $$MuL (%A, %B) .

Q:%0="/" $$DIV(%A, %B)

Q:%0="=" $$EQUAL (%A, %B)

Q: %0=·~'**" . $$POWER(%A, %B)

Q:%0="<" $$LESS(%A,%B)

Q: %0=">" $$GREATER(%A,%B)

Q: %0=" '=" '$$EQUAL (%A, %B)

Q:%0=" '<" '$$LESS(%A,%B)

Q:%0='">" '$$GREATER(%A,%B)

Q :@ ($$R2CAN (%A) _:%0_$$R2CAN (%B))

March 1996

; Solve a system of linear equations A*x=b with dimension n
SOLVE(N,A,X,B) N I,J,JPIVOT,K,L,LO,Ll,R,S,W,Z

F I=l:l:N S R(I,I)=l,Z(I)=I

F K=l:l:N D

.F I=K:l:N D S L(Z{I),K)=$$EXPR("A(Z(I),K)-S")

.. S S=O F J=l:l:K-1 S S=$$EXPR("L(Z(I) ,J)*R(J,K)+S")

.S L0=-1

.F J=K:l:N D

.. S L1=$TR(L(Z(J),K),"-") S:$$EXPR("Ll>L0") LO=Ll,JPIVOT=J

.S LO=Z(K),Z(K)=Z(JPIVOT),Z(JPIVOT)=LO

.F I=K+l:l:N D S R(K,I)=$$EXPR("A(Z{K),I)-S/L(Z{K),K)")

.. S S=O F J=l:l:K-1 S S=$$EXPR("L(Z(K),J)*R(J,I)+S")
F K=l:l:N D S W(K)=$$EXPR('.'B(Z(K))-S/L(Z{K),K)")

.S S=O F I=l:l:K-1 S S=$$EXPR("L(Z(K),I)*W(I)+S")

F K=l:l:N D S X(N-K+l)=$$EXPR("W(N-K+l)-S")

.S S=O F I=N-K+2:l:N S S=$$EXPR("R(N-K+l,I)*X(I)+S")
Q

Tiris small program solves the prob
lem.

The values of the above system of lin
ear equations produces the following
"solution" on MSM (3.0.8):

Xl = .0039800356210444868
X2 = .003597140594873016
X3 = -.000371344648308079
X4 = 0

The solution looks reasonable. The
program, rewritten to do the trick
with rational arithmetic, reveals that
the previous solution is bogus.

If a solution exists, the results of com
putations like this is usually not that
bad if done in M. Doing the compu
tations with floating point arithmetic
will typically incur a loss of about 5
digits. If a system gives you 8 decimal
digits, a loss of 5 digits is dramatic. M
gives you 15 digits to start with. If you
loose 5, the result in most cases is per
fectly acceptable.

The more digits of "precision" your
system has, the smaller your chances
of experiencing an example of bad

March 1996

computer math. But that just makes
you complacent. As long as we use
floating point arithmetic, our num
ber crunchers occasionally crunch
digits into meaningless dust. But
with rational arithmetic, you never
get a mega-flop (pun intended!).

The basic math capabilities of M
implementation basically have the
same inherent flaws as you will find in
any other programming environ
ment. But the other features like
string handling and indirection allow
for an easy and convenient imple
mentation of rational arithmetic.

M

Wmfried Gerum is with Wmner Software,

GmbH in Ri:ittenbach, Germany. You may

contact him by phone at 011-49-9195-940022
or by fax at 011-49-9195-940030.

1995-1996
M Technology
Association
Board of Directors
John E Covin
Chair
Coming Pharmaceutical Services
210 Carnegie Center
Princeton, NJ 08540
Phone: 609-452-4432
Fax: 609-452-9821

David A. Holbrook
Vice Chair
InterSystems Corporation
One Memorial Drive
Cambridge, MA 02142
Phone: 617-621-0600
Fax: 617-494-1631

Catherine Pfeil, Ph.D.
Executive Director
VAISC6-San Francisco
301 Howard Street, Suite 600
San Francisco, CA 94105 · ·
Phone: 415-744-7520
Fax: 415-744-7530

Elliot A. Shefrin
neasurer
NIH/Gerontology Research Center
4940 Eastern Avenue
Baltimore, MD 21224
Phone: 410-558-8144
Fax: 410-558-8321

Richard G. Davis, Ph.D.
Immediate Past Chair
Mformation'SYStems, Inc,
209 Edgebrook Drive .
Boylston, MA 01505-05'05
Phone: 508~869-6976
Fax: 508.,869-6008

John P. Glaser, Ph.D.
Member at Large
Brigham & Women's Hospital
75 Francis Street
Boston, MA 02115
Phone: 617-732-6408
Fax: 617-732-5831

Rick D.S. Marshall
Member at Large
VA IRM Field Office
1660 S. Columbian Way
Seattle, WA 98108-1597
Phone: 206-764-2283
Fax: 206-764-2923

John M. McCormick
Member at Large
InterSystems Corporation
One Memorial Drive , ' .
Cambridge, MA 02142
Phone: 617-621-0600
Fax: 617-494-1631

Susan A. Schluederberg
Member at Large
Conne.ctions Group, Ltd.
1100 Sunset Drive
Bel Air, MD 21014
Phone.: 410-838-6062
Fax:· 410-838-6062

At COMPUTING 35

