
TIPS 'N' TRICKS

Sorting Revisited

by Winfried Gerum

Winfried Gerum

Abstract
The implicit collation in the M lan­
guage does not always yield a
sequence of indices according to
user expectations. Under the heading
of internationalization, the MDC
(MUMPS Development Committee)
has provided a handle to escape the tra­
ditional limitations. The MDC work
so far does not help a typical user with
her collation problems. Here we pres­
ent a Generic Key Transform that
makes it very easy to specify a wide
range of collation types. This can be
used with or without the MDC
.framework.

Careful design of the MUMPS lan­
guage provides us with a wide range of
features that superficially look simple.
Behind that simple facade, there is
powerful functionality. One of the
most popular features is the implicit
collating in local and global arrays.
Numeric keys are automatically
sorted according to their numeric
value. Non-numeric keys are· sorted
"alphabetically." But this "alphabet"
is the ASCII character set. In this al-

22 Al COMPUTING

phabet, uppercase and lowercase
characters are quite different. As long
as keys are numeric-only or strictly
words of the same case, the result is
perfect. But with entries of mixed
case, non-English characters, etc.,
there may be some surprises.

In a previous Tips 'N' Tricks column
("How To Sort McMUMPS and other
Strange Guys"), I discussed the issues
and presented a generic algorithm to
transform keys to an alternate format
that sorts according to user expecta­
tions with the traditional MUMPS
collation scheme. That Generic Key
Transform allows you to specify that
son;ie characters (or combination of
characters) sort like a different char­
acter (or combination of characters).
That proved to be quite useful: You
can specify that uppercase characters
sort as lowercase characters and it
allows you to specify that characters
like ii sort like ae, etc.

The Generic Key Transform, as pub­
lished in the former article, did not
allow you to specify that a character
(or combination of characters) should
sort like no character. And, as a
reader pointed out, it did not provide
the expected collation for strings with
embedded numbers.

The MUMPS Development Commit­
tee has · introduced several new fea­
tures to the MUMPS language to facil~
itate Internationalization of MUMPS
software. Regarding the collation of
MUMPS globals, things are as
simple as: SET A$GLOBAL(gvn,
"COLLATE") algoref with
;\$GLOBAL being a Structured Sys­
tem Variable (ssvn), gvn a global, and

algoref describing a function such that
for every key X the expression
@(algoref_"(X)") yields a unique
value to be used for sorting. The actual
storage may use the plain key or the
transformed key. These details are not
visible to the application program. It
works like magic, if your MUMPS im­
plementation supports that and if you
can construct a function with the de­
sired property. The transformed key is
not subject to the string length limita­
tions that may apply for plain keys.

Even if your MUMPS application
does not support this A$GLOBAL,
you can reap the benefits of such a so­
phisticated collation scheme if you
use the key transform on the applica­
tion level. Albeit, without absolution
from the string length restriction.

Anyway, the problem is how to con­
struct such a key transform. Note that
the required uniqueness of the key
transform guarantees the existence of
a reverse transform.

One way is to provide ad hoc solu­
tions for particular problems (e.g. you
want to ignore case in alphabetic char­
acters, and you want to ignore all non­
alphabetic characters). Then, you
could specify a function:

Al(X) QUIT $TRANSLATE(X,"ABCDEF
GHIJKLMNOPQRSTUVWXYZ"_X,
"abcdefghijklmnopqrstuvwxyz")_
$CHAR(n)_X

with (0 :5 n < ($ASCII("a"))) and
$C(n) being permitted in subscripts.
The uniqueness is obvious and the re­
verse transform is as simple as:

RevAl(X) QUIT $PIECE(X,$CHAR(N)
, 2,$LENGTH(X,$CHAR(n)))

November/December 1995

If the ASCII character set is the only
character set you will ever use, this
function Al may be all you need to
solve your collation problems. But
complexity lurks behind many inno­
cent-looking things.

The issues:

• Sort uppercase like lowercase char­
acters

• Ignore punctuation in sorting

• Sort embedded numbers according
to numeric values

• Sort "Mc" in names like "Mac"

• Sort a, A, re, ~ like ae

Look at:

MUMPS: note-taking, notetaker,
noteworthy

Human: notetaker, note-taking,
noteworthy

Here the"-" should not have a colla­
tion value.

One reader pointed out that there is
another shortcoming. If a number is
embedded within a string, you get
funny results:

MUMPS: Filel, FilelO, Filell, File2,
File3, ...

Human: Filel, File2, File3, FilelO,
Filell, ...

And if you sort Roman numbers (or
strings containing Roman numbers)
the results are even less useful:

MUMPS: i ii iii iv ix v vi vii viii x xi
xii xiii xiv xix xv xvi xvii
xviii xx

Human: i ii iii iv v vi vii viii ix x xi
xii xiii xiv xv xvi xvii xviii
xix xx

November/December 1995

And what about numbers being repre­
sented as words?

MUMPS: chapter five, chapter four,
chapter one, chapter six,
chapter three, chapter two

Human: chapter one, chapter two,
chapter three, chapter four,
chapter five, chapter six

There is no cure-all, as some strings
may be ambiguous: "mix" may be an
English word or a Roman number
(1009), "dix" may be the French word
for 10 or a Roman number (509).

However, the Generic Key Transform
can be enhanced to accommodate
some of the additional requirements
presented here:

The basic idea remains the same: The
substrings of the key are replaced by
counterparts with the desired colla­
tion property. A second string is pre­
pared that provides information to do
the backward transform.

It is not easy to accommodate numeric
values in this context. We have to
transform a numeric value in such a
way that the string representation has
the desired collation property. When
we realize that a numeric value may
have any number of digits before or
after the decimal point, it soon be­
comes evident that we cannot find a
transform for all possible numbers.
That holds true, even when "all possi­
ble" means "all canonic numbers sub­
ject to a string length limitation."

As long as we settle for numbers
within a predefined range of digits
before and after the decimal point,
everything is fine. We simply do a
$JUSTIFY according to the selected
number of digits and $TRANSLATE
spaces to zeroes. That does not do the
trick for negative numbers. There you
have to take the tens complement to
get the right property. The fixed for-

mat requires that a sign is used for all
numbers. However,"+" and"-" sort
in this sequence. So replace"-" by "O"
and"+" by "1" to fix this.

The Generic Key Transform does not
change numbers that have more than
the preselected number of digits on ei­
ther side of the decimal point. Neither
does it give non-canonic numbers any
special attention. After the (trans­
formed) number we put an "A" to de­
note "Arabic" number. In a similar
way, Roman numbers can be first
transformed to the Arabic notation,
then to the format as described with
an "R" appended. The function deals
with the fact that a Roman number
may be represented by either lower­
case or uppercase characters. But
again, the fact that the transform has
to be reversible, means we can accept
"canonic numbers" only. The tokens
MXM and MDCCCCLXXXX repre­
sent the same number (1990).

The functionality described so far is
fully implemented in the MUMPS
code that follows this article.

Further effort could extend the func­
tion to sort words for numbers ac­
cording to their numeric value instead
of alphabetically. There again the
question of canonic values arises
(eleven-hundred vs. one-thousand­
one hundred).

Doing things a little differently, one
could eliminate the need to restrict nu­
meric entities to their canonic form.

The remaining challenges are how to
find a way to collate arbitrary embed­
ded numbers and what to do with am­
biguities like "mix." For most practi­
cal purposes, the limitations in this
Generic Key Transform will be insig­
nificant. Again, MUMPS provides
the perfect framework for easy
implementation of very demanding
tasks. •

•COMPUTING 23

Routine %GKT
09/18/95 10:25:05 AM
Size is 9877 bytes, 158 lines

+l %GKT
+2 +l
+3 +2
+4 +3

+5 +4
+6 +5
+7 +6
+8 +7
+9 +8
+10 +9
+11 +10
+12 +11
+13 +12
+14 +13
+14 +15
+16 +15
+17 +16
+18 +17
+19 +18
+20 +19
+21 +20
+22 +21
+23 +22
+24 +23
+25 +24
+26 +25
+27 +26

;generic key transform;
;Gerum,4.7.1995
Q
;function $$INA%GKT(InStr,TrTable[,Offset[,Delim
[,Justl,Just2,Nsys]]])
;in:InStr string to be transformed

TrTable transformation table (string)
1st char usually ":" delimiter within replacement pair
2nd char usually"," delimiter between replacement pairs
following chars are pairs like

" : ,a:A,A:A,b:B,A:AE,sch:S"
meaning "a" sorts as "A", "b" as "B", "A" as "AE" etc.
the "from" part of a replacement pair should be at least one character long.
The "to" part may be any length, including zero.
So the delimiting chars themselves cannot be transformed. The
order within the table is significant; if
several combinations of cha~s map into the same char the
order within the table decides which one sorts first. Each
character not in the table sorts before occurrences of the
same character resulting from a transform.
Offset for counts string, recommended value 0 if CTRLS are
permitted as subscripts, otherwise 32 (=$ASCII(""))
default value is 48 (=$ASCII("O"))
If called by name, value actually used is returned.
Delim delimiter between raw transform and counts string,
should be one character. Surplus chars are being discarded.
default value is " "

+28 %GKT+27
That character either should never be in an input
string or it should appear in the translation table.
Its $ASCII value should be small. +29 +28

+30 +29
+31 +30
+32 +31
+33 +32
+34 +33
+35 +34
+36 +35
+37 +36
+38 +37
+39 +38
+40 +39
+41 +40

If called by name, the value actually used is returned.
The following three parameters are used to get the
desired collation for substrings that are numeric.
As it is not possible to fit arbitrary precision numbers
in this collation scheme, the restriction is as follows:
If a numeric substring SS satisfies
SS=+$EXTRACT($JUSTIFY(SS,Justl,Just2),l,$LENGTH(Justl))
and if adjacent characters do not extend the substring
to form a numlit,
it sorts according_ to its numeric value
Just!
Just2

+42 +41 Nsys String of Characters "ARr"
+43 +42 to determine whether Arabic, Roman (written in uppercase) or
+44 +43 Roman (written in lowercase) numbers should be sorted according
+45 +44 to their numeric value and which system should take precedence.
+46 +45 default is "A" (Arabic, no Roman numbers)

·+47 +46 Only for Arabic numbers a sign and a fractional part is accepted
+48 +47 ;out: transformed key, with desired collation properties
+49 IN(InStr,TrTable,Offset,Delim,Justl,Just2,Nsys) N A,B,C,DbetwPrs,OinPair,F,I,Num,R,X,Y,Z
+50 +l QUIT:$G(InStr)-"" "" ;missing or trivial string
+51 +2 QUIT:$G(TrTable)?.4E Instr ;missing or trivial translation table
+52 +3 S:$G(Offset)="" Offset=48 ;offset defaults to $ASCII("0")
+53 +4 SET Delim=$EXTRACT($JUSTIFY($G(Delim),l)) ;delimiter defaults to" "
+54 +5 SET Num=$CHAR($A(Delim)+l) ;"numeric" token (make it parameter?)
+55 +6 SET DinPair=$EXTRACT(TrTable) ;delimiter within replacement pair
+56 IN+7 SET DbetwPrs=$EXTRACT(TrTable,2) ;delimiter between replacement pairs
+57 +8 SET (X,Y,Z)= ""
+58 +9 FOR I=l:l:$LENGTH(InStr) DO SET X=X C,Y=Y B,Z=Z A
+59 +10 .SET C=$EXTRACT(InStr,I),A=$CHAR(Offset)

24 M COMPUTING November/December 1995

;

+60 +11
+61 +12
+62 +13
+63 +14
+64 +15

+65 +16
+66 +17
+67 +18
+68 +19
+69 +20
+70 +21
+71 +22

+72 +23
+73 +24
+74 +25
+75 +26

+76 +27
+77 +28
+78 +29

+79 iN+30
+80 +31
+81 +32
+82 +33

+83 +34
+84 +35
+85 +36

+86 +37
+87 +38
+88 +39
+89 +40

+90 +41
+91 +42
+92 +43
+93 +44
+94 +45

.IF -.0123456789[$EXTRACT(InStr,I),Nsys["A" ;consider Arabic numbers?

.IF IF -.0123456789'[$EXTRACT(Instr,I-l)!(I=l) ;number previously rejected?

.IF IF $EXTRACT(InStr,I,$LENGTH(InStr))'?.l"-"l.Nl"E"lN.E ;beware Exponential notation

.IF SET C=+$EXTRACT(InStr,I,$LENGTH(InStr))

.IF IF $EXTRACT(InStr,I,I+$LENGTH(C)-l)=C,$EXTRACT(InStr,I+$LENGTH(C))'=0 ;substring canonic
number?
.IF IF C=+$TRANSLATE($EXTRACT($JUSTIFY(C,Justl,Just2),1,Justl)," ");does# fit?
.IF SET I=I+$LENGTH(C)-l DO SET C=Num_C_$CHAR($FIND(Nsys,"A")+64),B="" QUIT
.. IF C<O SET C=0_$TRANSLATE($JUSTIFY($TRANSLATE(C,"-"),Justl,Just2)," 0123456789",99876543210)
.. ELSE SET C=l_$TRANSLATE($JUSTIFY($TRANSLATE(C, "-") ,Justl,Just2)," ",0)
.IF "ivxlcdm"[$EXTRACT(InStr,I),Nsys("r" ;consider lowercase Roman numbers?
.IF IF "ivxlcdm"'[$EXTRACT(InStr,I-l)!(I-l) ;number previously rejected?
.IF SET C=$PIECE($EXTRACT(Instr,I,$LENGTH(InStr))_ ".", $EXTRACT($TRANSLATE($EXTRACT(Instr,I,
$LENGTH(InStr)),"ivxlcdm")_"."))
.IF IF EXTRACT(InStr,I-l)?.lP,$EXTRACT(InStr,I+$LENGTH(C))?.lP
.IF IF C] "",C=$TRANSLATE($$NqrmRom(C),"IVXLCDM","ivxlcdm") SET R=$$R2A(C)
. IF IF R=+$TRANSLATE($EXTRACT($JUSTIFY(R, Justl, Just2), 1, Justl), " ")·; does # fit?
.IF SET I=I+$LENGTH(C)-l,C=Num_l_$TRANSLATE($JUSTIFY(R,Justl,Just2)," ",0)_$CHAR($FIND(Nsys,"r")
+64) ,B="" QUIT
.IF "IVXLCDM"[$EXTRACT(InStr,I),Nsys["R" ;consider uppercase Roman number?
.IF IF "IVXLCDM"'[$EXTRACT(Instr,I-l)!(I=l) ;numbers previously rejected?
.IF SET C=$PIECE($EXTRACT(InStr,I,$LENGTH(InStr))_ ".",$EXTRACT($TRANSLATE($EXTRACT(InStr,I,
$LENGTH(InStr)),"IVXLCDM")_"."))
.IF IF EXTRACT(InStr,I-l)?.lP,$EXTRACT(InStr,I+$LENGTH(C))?.lP
.IF IF C]"",C=$$NormRom(C) SET R=$$R2A(C)
.IF IF R=+$TRANSLATE($EXTRACT($JUSTIFY(R,Justl,Just2),l,Justl)," ") ;does# fit?
.IF SET I=I+$LENGTH(C)-l,C=Num_l_$TRANSLATE($JUSTIFY(R,Justl,Just2)," ",0)_$CHAR($FIND(Nsys,"R")
+64) ,B="" QUIT
.S C=$EXTRACT(InStr,I)
.IF TrTable'[(DbetwPrs_C) SET (A,B)=$CHAR(Offset) QUIT ;no transform
.F I=I:l:$LENGTH(InStr) QUIT :Trtable'((DbetwPrs_C_$EXTRACT(InStr,I+l)) QUIT :$EXTRACT(InStr,I
+l)=DinPair DO
.. S C=C_$EXTRACT(InStr,I+l) ;get longest matching entry
.IF TrTable'[(DbetwPrs_C_DinPair) SET B=$CHAR(Offset) QUlT
.S F=$PIECE($PIECE(TrTable,DbetwPrs_C_DinPair,2),DbetwPrs) ;get replacement
. IF F="" SET B=$LENGTH($PIECE(TrTable j)betwPrs, DbetwPrs_C j)inPair), DinPair j)betwPrs) ; qet # of
entry
.IF SET A=$CHAR(Offset+B),(B,C)="" QUIT
.SET B=$LENGTH($PIECE(TrTable_DbetwPrs,DbetwPrs_C_DinPair),DinPair_$EXTRACT(F)) ;get# of entry
.SET C=F,B=$CHAR(Offset+B),A=$CHAR(Offset)
FOR I=$LENGTH(Z):-l:O IF $A(Z,I) '=offset SET Z=$EXTRACT(Z,l,I) QUIT
FOR I=$LENGTH(Y):-l:O IF $A(Y,I) '=Offset SET Y=$EXTRACT(Y,l,I) QUIT

+95 +46 IF Z="" QUIT:Y="" X QUIT X_Delim_Y
+96 +47 QUIT X_Delim_Y_Delim_Z
+97 +48 ;function $$INA%GKT(InStr,TrTable[,Offset[,Delim[,Justl,Just2,Nsys]]]j
+98 +49 ;Just2 is currently not used. We keep it just for symmetry with $$IN
+99
+100
+101

+50 ;reverse function to IN, in and out same as above
OUT(InStr,TrTable,Offset,Delim,Justl,Just2,Nsys) NEW A,B,C,DbetwPrs,DinPair,I,IA,IB,Num,OutStr,X,Y,Z,c
+l QUIT: $G(Instr)= '"' '"' ; missing or trivial string

+102
+103

+2 QUIT:$G(Trtable)?.4E Instr ;missing or trivial translation table
OUT+3 SET:$G(Offset)="" Offset=48 ;offset defaults to $ASCII("O")

+104 +4 SET Delim=$EXTRACT($JUSTIFY($G(Delim),l)) ;delimiter defaults to" "
+105 +5. SET Num=$CHAR($A(Delim)+l) ;"numeric" token (make it parameter?)
+106 +6 SET DinPair=$EXTRACT(TrTable) ;delimiter within replacement pair
+107 +7 SET DbetwPrs=$EXTRACT(TrTable,2) ;delimiter between replacement pairs
+108 +8 SET X=$PIECE(InStr,Delim),Y=$PIECE(InStr,Delim,2),Z=$PIECE(InStr,Delim,3)

IF Z="",Y="" QUIT X
SET OutStr="",IB=l,IA=l
FOR I=l:l:$LENGTH(X) SET C=$EXTRACT(X,I) DO SET OutStr-OutStr_C
.SET A=$EXTRACT(Z,IA),IA=IA+l

+109 +9
+110 +10
+111 +11
+112 +12
+113 +13 .IF $A(A)>Offset SET C=$PIECE(TrTable_DbetwPrs,DinPair_DbetwPrs,$A(A)-Offset+l),C=$PIECE(C,DbetwPrs,

$LENGTH(C,DbetwPrs)),I=I-l QUIT
+114 +14
+115 +15
+116 +16
+117 +17

.IF C=Num SET C=$EXTRACT(X,I+2,I+Justl+l),B=$EXTRACT(Nsys,$A(X,I+Justl+2)-65) DO QUIT

.. SET C=$SELECT($EXTRACT(X,I+l):+C,l:-$TRANSLATE(C,"0123456789",9876543210))

.. IF B="A"

.. ELSE IF B="R" SET C=$$A2R(C)

November/December 1995 .. COMPUTING 25

+118 +18 .. ELSE IF B="r" SET C=$TRANSLATE($$A2R(C),"IVXLCDM","ivxlcdm")
+119 +19 .. IF SET I=I+Justl+2,B=""
+120 +20 .. ELSE SET Outstr="<inconsistent input>",I=$LENGTH(X)
+121 +21 .SET B=$EXTRACT(Y,IB),IB=IB+l QUIT:B=""
+122 +22 .SET B=$A(B)-Offset QUIT: 'B ;no replacement
+123 +23 .SET C=$LENGTH($PIECE(TrTable,DinPair.:_C,l,B),DbetwPrS) ;Piece# of replacement pair
+124 +24 .SET C=$PIECE(TrTable,DbetwPrs,C) ;replacement pair
+125 +25 .SET c=$PIECE(C,DinPair,2) ;replacing string
+126 +26 .SET C=$PIECE(C,DinPair) ;original string
+127 +27 .IF C=""!(c="") SET OutStr="<inconsistent input>",I=$LENGTH(X) QUIT
+128 +28 .SET I=I+$LENGTH(c)-l ;skip (length of replacement)
+129 +29 FOR IA=IA:l SET A=$EXTRACT(Z,IA) QUIT:$A(A) '>Offset DO SET OutStr=OutStr_C
+130 +30 .SET C=$PIECE(TrTable_DbetwPrs,DinPair_DbetwPrs,$A(A)-Offset+l),C=$PIECE(C,DbetwPrs,

$LENGTH(C,D~etwPrs))
+131 OUT+31 QUIT OutStr 1•

+132 +32 ;sort all lowercase as uppercase
+133 +33 ;inverse of $$UIN
+134 UIN(X) QUIT $$IN(X,":, :, ! :,-:,A:a,B:b,C:c,D:d,E:e,F:f,G:g,H:h,I:i,J:j,K:k,L:l,M:m,N:n,O:o,P:p,Q:q,R:r,

S:s,T:t,U:u,V:v,W:w,X:x,Y:y,Z:z,a:ae,6:oe,ii:ue,a:ss,A:ae,O:oe,0:ue",48," ",10,2,"ArR")
+135 UOUT(X) QUIT $$0UT(X,":, :, ! :,-:,A:a,B:b,C:c,D:d,E:e,F:f,G:g,H:h,I:i,J:j,K:k,L:l,M:m,N:n,O:o,P:p,Q:q,R:r,

S:s,T:t,U:u,V:v,W:w,X:x,Y:y,Z:z,a:ae,o:oe,ii:ue,a:ss,A:ae,O:oe,O:ue",48," ",10,2,"ArR'')
+136 DUDEN(X) QUIT $$0UT(X,":, :, !:,-:,A:a,B:b,C:c,D:d,E:e,F:f,G:g,H:h,I:i,J:j,K:k,L:l,M:m,N:n,O:o,P:p,Q:q,R:r,

S:s,T:t,U:u,V:v,W:w,X:x,Y:y,Z:z,a:a,o:o,ii:u,a:ss,A:a,O:o,0:u",48," ",0,0,''A")
+137 PHONE(X) QUIT $$IN(X,":, :, ! :,-,A:a,B:b,C:c,D:d,E:e,F:f,G:g,H:h,I:i,J:j,K:k,L:l,M:m,N:n,O:o,P:p,Q:q,R:r,

S:s,T:t,U:u,V:v,W:w,X:x,Y:y,Z:z,a:ae,6:oe,ii:ue,a:ss,A:ae,O:oe,0:ue",48," ",10,2,"A")
+138 +l ;-$$A2R(X) : convert Arabic to Roman
+139 A2R(X) NEW I,J,R,T
+140 +1 SET R=$TRANSLATE(X," ")
+141 +2 QUIT:R'?l.N ""
+142 +3 QUIT:'R "nihil"
+143 +4 SET T="",T(l)="I",T(5)="V",T(lO)="X",T(50)="L",T(lOO)="C",T(500)="D",T(lOOO)="M"
+144 +5 FOR I=l000,500,100,50,10,5,1 DO
+145 +6 .FOR QUIT: 'R DO:R<I QUIT:R<I SET R=R-I,T=T_T(I)
+146 +7 .. FOR J=l,10,100 QUIT:J*2'<I IF I-J'>R SET R=R-I+J,T=T_T(J)_T(I) QUIT
+147 +8 .. ; one could subtract fives: MVM <~> MXMV etc.
+148 +9 .. ; FOR J=l,5,10,50,100 QUIT:J*2'<I IF I-J'>R SET R=R-I+J,T=T_T(J)_T(I) QUIT
+149 +10 QUIT T
+150 +11 ;-$$R2A(X) : convert Roman to Arabic
+151 R2A(X) NEW I,R,T,Y
+152 +l SET R=$TR(X,"ivxlcdm","IVXLCDM") QUIT:R="NIHIL" 0
+153 +2 QUIT:$TR(R,"IVXLCDM")]""!(R="") '"';-invalid format
+154 +3 SET T="",T("I")=l,T("V")=5,T("X")=lO,T("L")=50,T("C")=lOO,T("D")=500,T("M")=l000
+155 R2A+4 FOR I=l:l:$L(R)-l S Y=T($E(R,I)),T=T+$S(T($E(R,I+l))>Y:-Y,l:Y)
+156 +5 QUIT T+T($E(R,$L(R)))
+157 +6 ;-$$NormRom(x) : normalize Roman
+158 NormRom(X) QUIT $$A2R($$R2A(X))

Winfried Gerum is with Winner Software,
GmbH in Rottenbach, Germany. You may
contact him by phone at 011-49-9195-
940022 or by fax at 011-49-9195-940030.

26 Al COMPUTING

MTA+

Database & Client/Server World

added value in '96

November/December 1995

