
TIPS 'N'
TRICKS

Forgive Thein, For They Know Not
What They Do (Luke, 23:34)

Winfried Gerum

Some old hands still say garbage
in, garbage out. But times
change, and it has become fash

ionable to use the word "fuzzy" in
stead. Users are still notoriously
fuzzy in their input, i.e., require
ments, orders, or even plain data
entry. Instead of replying with some
obscure error message, we now try to
make sense of input that is wrong if
taken literally.

What's in a name? Names are often in
the fuzzy area. If you have a database
with names, you have to take care of
a frequent problem of finding an entry
ifthe exact spelling is unknown. And
names sometimes have really strange
spellings, The time-honored SOUN
DEX algorithm for handling names is
well known in the M world. For those
who missed it so far, here is a short
introduction before going on to an
other related concept about names.

The solution is _mapping a name to a
class of similar sounds. The workings
are as follows: .

June 1995

by Winfried Gerum

Map lowercase to uppercase charac
ters. Let the first character represent
itself. For additional characters pro
ceed by mapping AEIOU and HWY
to class 0, the characters BFPV to
class 1, the characters CGJKQSXZ to
class 2, the characters DT to class 3,
the character L to 4, Mand N to 5, and
R to 6, and discard all nonalphabetic
characters. Then treat adjacent occur
rences of the characters of the same
class as a single occurrence. Then
purge all references to class 0 (mostly
vowels). Finally, use only the first
four characters of the result.

The distribution, however, is not
even: A666 is a rare SOUNDEX
-value. Only sixty-four six-character
words map into it. In contrast, A22
represents 205,312 "words." In real
ity, that huge realm of "possible"
names is populated by only a small
number of real names. Therefore, the
performance of the SOUND EX algo
rithm in real applications is quite sat
isfying.

To see just how good it is, I checked
against some databases with real
names (from German environments).

;-Compute SOUNDEX value of X
SOUNDEX(X) NEW A,C,D,I

+l SET D=$TR(X,"abcdefghijklmnopqrstuvwxyz","ABCDEF
GHIJKLMNOPQRSTUVWXYZ")

+2 SET A=$E(D),$E(D)="",C=""
+3 SET D=$TR(D,"AEHIOUWYBFPVCGJKQSXZDTLMNR" D,"0000

0000111122222222334556") -
+4 FOR I=l:l:$L(D) SET:C'=$E(D,I) C=$E(D,I),A=A C
+5 QUIT $E($TR(A,0) ,1,4) -

This is the basic algorithm. Some re
finements are possible, such as map
ping PH to F, and so on. As long as
there are not too many foreign names
in a database, there is no need for
many refinements.

This algorithm looks very crude,
since a wide range of characters are
mapped to the same value. If you take
combinations of up to six characters,
there are 321,272,406 combinations
mapped into just 6,734 different
SOUNDEX values. That means there
are an average of 47,709 "words"
mapped into each SOUNDEX value.

Database 1 is a small collection of sur
names, Database 2 a large collection
of surnames, and Database 3 a list of
first names. Table 1 gives the number
of entries (different names) in each
database, the number of different
SOUNDEX values derived from the
names, the number of names that pro
duce a unique SOUNDEX value, the
average number of names mapping to
one SOUNDEX value, and the maxi
mum number of names mapping to
one single SOUNDEX value.

The interpretation is clear: the smaller
a database, the more useful the

M COMPUTING 45

Entries SOUND EX

Values

Database 1 1,502 841

Database 2 26,709 3,718

Database 3 2,119 919

Unique Average

SOUND EX Entry/Sdx

528 1.8

957 7.2

451 2.3

Max#
Entry/Sdx

11

123

17

number of characters imposes an up
per limit on the Levenshtein Distance
between two words.

Table 1. Results of SOUNDEX matches from German-language databases.

Just store your words in a two-level
global with the length of the word as
the first subscript and the word as the
second subscript. When searching for
lookalikes of, say, a four-character
word, scan the sublists with three-,

SOUNDEX method. It is wonderful
for a physician in solo practice, but it
has limitations if used unrefined in a
clinic.

Even in small databases, the SOUN
DEX method has its limitations. A
small change in a word may produce
a very different SOUNDEX value.
Let's use $$SOUNDEX ("Marl
boro") = "M614" $$SOUNDEX
("Mallboro") = "M4 l 6". That exam
ple demonstrates that the SOUNDEX
is not suitable for use in something
like a spelling checker. A simple
spelling checker that just looks at
whether a given word is in a list (a
global) is extremely straightforward
to have in M. But today more sophis
tication is required. A word processor
such as WordPerfect does not just say
that a word might be wrong, it also
gives a list of possibly correct alterna
tives. The amazing thing is that in
most cases one of the first alternatives
in a given list is the right one. How is.
this done?

Quite simply, you need a definition of
a distance between two words, so that
a "small" change gives a small value
for "distance." There is something
called the "Levenshtein Distance" be
tween two words. It is "the minimum
number of character insertions, char
acter deletions, or character replace
ments to change one word into an
other." That sounds reasonable in the
definition but awfully complicated to
implement. As happens so often, just
a few lines of M code will do the job:

46 M COMPUTING

;Function $$LSD
;Computes Levenshtein Distance between two words

LSD(Wl,W2) NEW A,Il,I2,Ll,L2,R,T,X
SET Ll=$L(Wl},L2=$L(W2)
QUIT: 'Ll L2 QUIT: 'L2 Ll
SET T=O FOR Il=O:l:Ll SET A(O,Il}=Il
FOR I2=l:l:L2 DO
.SET T='T,A(T,O)=I2
.FOR Il=l:l:Ll DO
.. SET R=A('T,Il-1}+$$DCHAR($E(Wl,Il},$E(W2,I2))
.. SET X=A('T,Il}+l SET:X<R R=X
.. SET X=A(T,Il-1)+1 SET:X<R R=X
.. SET A (T, Il) =R
QUIT R
;Function $$DCHAR
;"Unequalness" between two characters
;returns O if two characters are equal
;returns 1 if they are "completely" different

DCHAR(Cl,C2) QUIT Cl'=C2

How can this be used in a spelling
checker? Naturally, you need a list of
words appropriately stored in a
global. When words are checked
against the list, there is no problem.
Otherwise the checker scans the list,
computes the Levenshtein Distance
between each word and the word in
question, then presents words with a
small distance (or change) for se
lection.

Checking a word against every entry
in a database seems very wasteful, but
there is no simple remedy. The Lev
enshtein Distance does not impose an
order, and no matter how you arrange
the words, this unwieldy sense of con
volution persists. To reduce the
search, you can sort the names by
their length. The difference in the

four-, and five-character words. That
still leaves a lot of entries to c:heck
against. If errors in the first character
were impossible, you could drasti
cally reduce the search. Compare
words of suitable length beginning
with the same character. Unfortu
nately, mistakes have "minds" of
their own. Still, the idea looks too
good to be discarded. If your database
contains regular words (straight) and
$REVERSEd, then you could do a
fast check against all entries that share
either the first or the last character
with the word in question. Then your
global has two entries for each word:

SET ADICT($L(WORD},"STRAIGHT",
WORD)=""

SET ADICT($L(WORD), "REVERSED",
$RE(WORD))=""-

June 1995

Spelling Checker using Levenshtein Distance
Function $$SPELLCHK
Checks WORD and returns

l_";"_WORD if word is invalid,
or 1 ";"ALTERNATE if alternate has been selected,
or 0- - if word cannot be (re)interpreted.

SPELLCHK(WORD) NEW $R
QUIT:$D(ADICT(WORD)) "l;" WORD ;word in list
NEW D,I,L,MAXD,R,W -
SET MAXD=2 ;-Maximum distance of interest
SET W=""
;search for similar words
FOR SET W=$O(ADICT(W)) QUIT:W="" DO
.SET D=$$LSD(WORD,W)
.QUIT:D>MAXD ;no interest in large distance
.SET L(D,W)=W ;note word
;something similar ...
QUIT: '$D(L) 0; ... no
;display alternates
WRITE !,"Word '",WORD,"' not in dictionary,"
WRITE " please select alternate"
SET I=O
WRITE !, 11

(
11 ,I, 11

)
11 ,?5,"edit word"

FOR D=O:l:MAXD F S W=$0(L(D,W)) Q:W="" D
.SET I=I+l W !, 11

(
11 ,I, 11

)
11 ,?5,W

;select alternate
READ !,"Your Choice>",R
;here we should test for valid input
;no alternate selected
QUIT: 'R 0
;return selected alternate
SET W="L"
FOR I=l:l:R SET W=$Q(@W) QUIT:W=""
QUIT:W="" 0
QUIT "l;"_@W

;Function $$DCHAR

Another possible modification of the
basic Levenshtein Distance is to as
sign small difference values to char
acters that are neighbors on the key
board. That metric could help a poor
typist.

None of the algorithms presented in
this article fits all needs to remedy
poor input. The SOUNDEX method
is too crude to be used as a spelling
checker, except in cases when there
~e fewer than 2,000 words. It is per
fect in small databases dealing with
names. You can fine tune a spelling
checker with the Levenshtein Dis
tance to a high level of sophistication,
but it is very demanding on your proc
essor.

While the core algorithms can be writ
ten in any programming language, the
surrounding database machinations
are best done with-what else?
M. M

Then some words will be checked
twice, but the global dramatically
confines the search, and in that way a
spelling checker becomes practical.

;"Unequalness" between two characters

Introducing the function DCHAR seems
to be overkill for a simple comparison
between two characters. Two charac
ters are either equal or not, aren't
they? Well, matters are not that sim
ple: You probably feel that uppercase
A is very different from X, but only
slightly different from lowercase a.
Characters sharing the same SOUN
DEX class might be considered less
different than two characters belong
ing to different SOUNDEX classes.

Using that modified idea of a differ
ence between two characters, a spell
ing checker can become more forgiv
ing about phonetic misspellings in a
similar fashion to the SOUNDEX
algorithm. The spelling checker in

June 1995

;returns 0 if two characters are equal
;returns .1 if two chars differ in case only
;returns .5 if two chars share a SOUNDEX class
;returns 1 if they are "completely" different

DCHAR(Cl,C2) Q:Cl=C2 0
S Xl=$$UC(Cl),X2=$$UC(C2)
Q:Xl=X2 .1
Q:$$SDXC(Xl)=$$SDXC(X2) .5
Q 1

;$$UC makes characters uppercase

UC(X) Q $TR(X,"abcdefghijklmnopqrstuvwxyz","ABCDEFG
HIJKLMNOPQRSTUVWXYZ)

;$$SDXC SOUNDEX class of a character

SDXC(X) Q +$TR($E(X),"BFPVCGJKQSXZDTLMNR" D,"11112222
2222334556") -

WordPerfect seems to use something
like this Levenshtein distance: It is
very good on phonetic mistakes, but
it does not find some nonphonetic er
rors. WordPerfect seems to compare
phonemes instead of characters.

Winfried Gerum is with Winner Software
GmbH in Rottenbach, Germany. Send your
ideas for topics to him by phone at 011-49-
9195-940022 or by fax at 011-49-9195-
940030.

M COMPUTING 47

