
TIPS 'N'
TRICKS

Execution - Is It Always Deadly?

Winfried Gerum

Mis the language of choice for
the software professional
because many features make

it unique among programming sys­
tems. Some features are just better
than similar features in other com­
puter languages, but others are truly
unique. Let's take a close look at
some of them.

Few languages are self-referential. M
is self-referential in active and passive
ways. The passive feature is the $TEXT

feature which allows a program to
read itself (or other programs). The
active features are XECUTE and indi­
rection, which allow M code to exe­
cute new M code.

Indirection and XECUTE are two
closely related concepts in M. The de­
scription in manuals and textbooks
looks very simple and straightfor­
ward: Both insert data from a data­
base, from user input or from compu­
tations on the fly, into the execution
flow of a program. It is as simple as
birth, and quite as fascinating.

A textbook will tell you that you may
replace many, but not all, morsels of
code by something created on the fly.

30 Al COMPUTING

by Winfried Gerum

There are four types of indirection: ar­
gument, name, pattern, and sub­
script. If that sounds all Greek to you,
you're not alone. It depends on run­
time values, whether

SET A=B+@C

is legal or not. If C yields a name
value (e.g., "X'', "A4") the expres­
sion is valid (name indirection). If C
evaluates to "A+ 1" or to "5" the
whole thing is invalid! But if you see

WRITE @X

all of the values "X'', "A4", "A+ 5",
"5" are legal (argument indirection).
What makes the whole thing difficult
to grasp, I think, is that indirection
cannot insert just any piece of reason­
able code into a line of M code. I
know it can be easy to implement ar­
bitrary replacements by indirections.
But that does not help. The commu­
nists' credo has been "Marx is always
right." Our guideline is that the
MUMPS language standard is always
right.

Since not all forms of indirection
work, and since a static syntax analy­
sis cannot detect certain flaws in con­
junction with indirection, it is poten­
tially dangerous to use indirection.
Directors in charge of a large hoard of
programs therefore may prohibit the
use of indirection (and other nice
things in M, h_ll! Why don't they do
it in COBOL?).

The concepts of indirection and
XECUTE are so extremely powerful that
advanced programmers should not do
without them.

Simply using XECUTE or indirection
does not make a program a profes­
sional one. This command, similar to
the use of the naked reference, indeed
should be strictly forbidden for
novices.

Name indirection is simple: Where­
ver the syntax allows for a name, you
may write @expratom to replace the
name by an elementary expression
yielding a name. But unless the result
is interpreted as some other type of in­
direction, it is not allowed if that
expra tom yields something other than
a name.

Argument indirection means that one
or more arguments of a command may
be replaced by an expr. Again, do not
assume that any kind of argument in­
direction is legal. Unfortunately, it
also is illegal to have an argument in­
direction evaluate to no argument,
even when a command may allow for
an argumentless syntax.

It is meaningless to have multiple ar­
guments on a QUIT command. Maybe
for that reason a previous version of
the MUMPS standard did not allow
for argument indirection after the
QUIT command. Thus "QUIT @x"
would be legal only if x was the name
of a defined variable. Fortunately, ar­
gument indirection on the QUIT com­
mand now is permitted. Take a close
look at the FOR command. Argument
indirection has a very different mean­
ing here:

FOR @X DO SOMETHING

is always illegal! But

FOR @VAR=@FLIST

April 1995

is legal if VAR yields a (possibly sub­
scripted) name and FLIST yields
something like "1 : 1 : 1 O" or
"1,2,5: 10," etc.

Pattern indirection allows us to use @
on the right hand side of the pattern
operator.

Index indirection is a really nifty
thing. The first part of an array refer­
ence is the result of indirection and the
rest becomes rather plain. The stan­
dard is very hard to read at that point
(something like rgnamind ???) and so
are textbooks.

It looks something like

@expratom@(h expr)

Where expratom yields the name of a
subscripted or an unsubscripted vari­
able. Then some additional subscripts
are appended. Unless you have seen the
first fairly good example, you do not
have any idea what that is good for.

The XECUTE command executes the
value of an expression as a piece of M
code. As with almost all commands
of the MUMPS language it may have
a postconditional on the command.
The XECUTE command is one of the
few commands that may have a post­
conditional on the argument (the other
such commands are oo and GOTO).

Simple as Mis, I became aware of the
latter fact just five years after starting
working with M. Many will warn you
that indirection and XECUTE will im­
pair performance and reduce read­
ability of M code.

I have seen many examples that might
strongly support such statements. But
such examples are like looking at cars
crashed in various accidents. Regard­
less of how terrible an example might
be, it does not prove that the whole
concept should be discarded. Unless
you understand the implications of
your code completely you should not
distribute it to the rest of mankind.

April 1995

Some problems can hardly be solved
without the help of XECUTE and indi­
rection. Some problems may be
coded for better readability or main­
tainability with indirection.

The use of table-driven routines is a
powerful technique that relies heavily
on indirection and XECUTE.

Let us look at some examples m
action.

A very frequent problem is to do a
screen mask to enter a set of data: A con­
sistent behavior of the user interface is
an absolute must. Therefore it is usually
not a good idea to hand code the dia­
logue. A (simple) description should be
given for each field. In our example the
definition is part of a routine, but it
might as well be stored in a global. The
definition then can be interpreted by a
relatively small procedure:

+l ;Definition of a screen mask
+2 MENU ; YPos=l; XPos=l; Prompt=">"; Variable="X"; Pat tern=". E"
+3 ;5; 10; "Name ";NAME; lUl.L
+4 ; 6; • ; "First Name " ; FSTNAME; lUl. L
+5 ;7;.;"Date of Birth ";DOB;2Nl"/"2Nl"/"4N
+6 ;9;20;"Phone ";PHONE;3.N
+7 ;END
+8 ;routine to interpret that definition
+9 ST NEW ABORT.PREV
+10 DO !NIT
+11 NEW DONE,F,I,LINE.LNBR,MDEF.X
+12 SET MDEF=$TEXT(MENU) ;Description of Menu fields
+13 ;init Variables for Menu fields
+14 SET I=O ;will be field# of Variable
+15 FOR F=2:1:$LENGTH(MDEF,";") DO QUIT:X="" NEW @$PIECE(X."=") SET @X
+16 .SET X=$PIECE(MDEF.";".F)
+17 .SET:$PIECE(X."=")="Variable" I=F
+18 I I FOR LNBR=l:l DO QUIT:LINE?." "l";END" NEW @$PIECE(LINE.";".I)
+19 .SET LINE=$TEXT(MENU+LNBR)
+20 ;F now is the number of fields in a description line
+21 AGAIN SET LNBR=l ;we start with the first line
+22 SET DONE=O ;we still expect something to be done
+23 FOR DO QUIT:DONE
+24 .SET LINE=$TEXT(MENU+LNBR)
+25 .IF LINE?." "l";END" SET DONE=! QUIT
+26 .FOR I=2:l:F SET X=$PIECE(LINE.";".I) DO
+27 .. XECUTE:X'="•" "SET" $PIECE($PIECE(MDEF.";".I)."=")

"=X" -
+28 REPEAT-.DO GOTO @X
+29 .. WRITE @("/CUP(" YPos "," XPos ")").@Prompt
+30 .. READ X - - - -
+31 .. IF X=ABORT SET X="ABORT" QUIT
+32 .. IF X=PREV SET X="PREV" QUIT
+33 .. IF X?@Pattern SET @Variable=X.X="NEXT" QUIT
+34 .. SET X="REPEAT"
+35 .. DO ERRMES("Acceptable input matches ?"_Pattern)
+36 NEXT .SET LNBR=LNBR+l QUIT ;continue with next question
+37 ABORT .SET DONE=2 QUIT
+38 PREV .IF LNBR>l SET LNBR=LNBR-1 QUIT ;to previous question
+39 .DO ERRMES("Type "_ABORT_" to abort") QUIT
+40 QUIT:DONE=2 ;there was an abort
+41 GOTO: '$$DONE AGAIN
+42 ;>>>here some code using the input is appropriate<<<
+43 QUIT
+44 !NIT ;General Input tokens:
+45 SET ABORT=""""
+46 SET PREV="""
+47 QUIT
+48 DONE NEW X
+49 FOR W /CUP(20.35),"Form complete?" READ X DO QUIT:X?lN
+50 .SET X=$TR(X. "yesno". "YESNO")
+51 .IF X=""
+52 . ELSE IF $EXTRACT ("YES" • 1, $LENGTH (X))[X SET X=l
+53 .ELSE IF $EXTRACT("NO".l,$LENGTH(X))[X SET X=O
+54 .ELSE DO ERRMES("Please type 'Yes' or 'No"') SET X=""
+55 QUIT X
+56 ;-handle all error messages in the same way
+57 ERRMES(TXT) WRITE /CUP(24).TXT,/EL
+58 QUIT

Figure 1. A simple dialogue driver.

., COMPUTING 31

The above routine acts as a simple di­
alogue driver. It uses three out of four
possible types of indirection:

• Name indirection line + 15 NEW,

+ 18 NEW

• Argument indirection line + 15 SET,

+28 GOTO, +29 WRITE

• Pattern indirection line + 33 IF

Although this routine is fully func­
tional, our purpose here is not to rec­
ommend it as a clever way to manage
input screens. The nice thing about
the code is that it can be amended in
two important respects very easily: To
add more input fields, just put in more
lines in the menu table. To add more
functionality, add more columns to
the menu table (currently line 3
through 7) and insert code necessary

· to process those data. And it is easy
to adapt the user interface to the latest
fads of user interfaces.

Note that in line +27

X:X'="*" "S "_$P($P(X,";",I),"
=")_"="_X

cannot be replaced by

S:X '="*" @$P($P(X, ";",I),"=")=@X

in general. The latter will work if the
right-hand side of the SET evaluates to a
name, but it won't work in other cases.

While it is a good idea in general to .
write short lines of code, it is a special
requirement if the code is to be
printed. But there are some places
where it is not possible to split code:
Look at lines + 15 and + 18, where
there is indeed a NEW in a FOR loop.
This is done to initialize the variables
of the menu table. The NEW cannot .be
moved into the block following the
DO, as this would change the scope of
this NEW and thereby render it useless.

As a reasonable example of subscript
indirection, figure 2 is a global lister
written as a five-line procedure.

32 Al COMPUTING

Global Lister with $Order
GVN =Global variable name, e.g. SNA(AUTILITY)
DIR = Direction: 1 = forward listing, -1 = backward

+l GLO(GVN,DIR) NEW X SET DIR=+SG(DIR,l) QUIT:-l'[DIR
+2 IF u!R=l WRITE:SD(@GVN)#2 GVN,!,@GVN,!
+3 SET X="" FOR SET X=SO(@GVN@(X) ,DIR) QUIT:X="" DO

GLO(SNAME(@GVN@(X)),DIR)
+4 IF DIR~l WRITE:SD(@GVN)#2 GVN,!,@GVN,!
+5 QUIT

Figure 2. A global lister written as a five-line procedure.

It is surprisingly short and one is
tempted to bet that it just won't
work. The trick is that a global may be
viewed as a recursively defined struc­
ture, and this procedure recursively
maps such a structure. Subscript indi­
rection is a special form of name indi­
rection: The first part (i.e., the name
and possibly some subscripts) origi-

Global Lister with $Query

more, the routine was supposed to
traverse some levels in a forward di­
rection and others in a backward di­
rection at the discretion of the user. A
slightly modified version of the GLO

procedure did the trick. A frequent
occurrence of a backward traversal
occurs when the main direction is for­
ward, but a user wants to review pre-

GVN =Global.variable name, e.g., SNA(AUTILITY)
forward listing only

+l GLQ(GVN) NEW X SET X=GVN
+2 WRITE:SDATA(@GVN)#2 GVN,!,@GVN,!
+3 SET X=GVN
+4 FOR SET X=SQUERY(@X) QUIT:X="" W X, ! ,@X, !
+5 QUIT

Figure 3. A faster global lister.

nates by indirection, the second part
comes from straightforward code.
The $NAME function converts the syn­
tactic element name to a string. It is the
inverse of the name indirection oper­
ation.

One also can write a shorter and faster
global lister by using $QUERY and
name indirection (see figure 3):

The GLQ procedure is probably faster,
since it does not have to pay for the

· overhead. of recursion. It uses name
indirection in several places, but it is
not as flexible as the GLO procedure.
GLO can move forward and backward.
You think there is no need to do back­
ward scanning? I recently had a proj­
ect where the number and sequence of
a dozen subscripts in a global struc­
ture had to be user-definable. Further-

viously processed or used data. In this
case, direction is reversed depending
on user action. Note that in these
cases the DIR variable should not be
included in the parameter list, as the
parameter list does an implicit NEW on
each call.

While people tend to emphasize new
features, we should not forget about
the old ones that made M big in the
first place. Al

Winfried Gerum is with Winner Software
GmbH, in Rottenbach, Germany. Contact
him by phone at 49-9195-940022 or by fax
at 49-9195-940030.

April 1995

