
TIPS 'N' 
TRICKS 

Efficiency in Boolean Expressions 

Winfried Gerum 

B
inary logic is supposed to be a 
big strength for computers (un
fortunately, the same is not true 

for humans). It is much simpler than 
addition and multiplication. A simple 
truthtable in principle tells you every
thing to be told about the main Bool
ean operations: 

A B A AND B A OR B 

FALSE FALSE FALSE FALSE 
FALSE TRUE FALSE TRUE 
TRUE FALSE FALSE TRUE 
TRUE TRUE TRUE TRUE 

Occasionally programmers pick the· 
wrong one of these operators, because 
in common parlance and or or are not 
used as precisely as And or Or in for
mal logic. A quick glance at the above 
table tells you that writing an AND in
stead of~ OR gives you the same re
sult in half the cases. This is the rea
son that in a test run of a routine you 
may get the proper result despite a 
programll}ing error. So be careful 
when using these operators. 

In M, all binary operators evaluate 
both operands, even if the first op
erand alone determines the result: 

38 Al COMPUTING 

by Winfried Gerum 

O*A always 0 
l**N always 1 
O&A always 0 
O'&A always 1 
l!A always 1 
0' !B always 0 

With the. multiplication or the expo
nentiation the exception seems to be 
a rare case that does not need special 
attention. But with the Boolean oper
ators, the first operand alone deter
mines the result in 50 percent of the 
cases. That situation indeed warrants 
some attention. Most programming 
languages do not pay special attention 
to this. The C programming language 
actually avoids evaluation of the sec
ond argument in Boolean operations. 
Programmers who are not aware of 
this may get funny results when writ
ing code such as: 

in M A B A&B A!B 

0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 1 

if ((*a <-'A') I l(*a++>='Z'))( ... ); 

the pointer a is not incremented 
( a++ ) unless the right side of the OR 
( I I ) is evaluated. 

In standard M, as stated above, both 
sides always are evaluated. This is 
more reasonable if one wants to re
duce side effects. But it is not without 
surprise either: 

IF $D(A)&(A>5) 

this will give an error in standard M, 
if$D (A) [ o (i.e., unsubscripted A is un
defined). It will work under GTM 
(Greystone Technology), however. 

There is no point in arguing for a 
change in the language standard in 
this regard. Such a change would not 
be backward compatible due to error 
processing and the notorious naked 
reference. 

If A and B in the above examples stand 
just for simple local variables, we 
need not make much fuss about it. But 
they stand for expressions of arbitrary 
complexity, which might be worth
while not to evaluate. 

Logical AND can be done efficiently in 
IF arguments in a straightforward 
way: 

IF A&B ;Mcode 

may be replaced by 

IF A,B ;Mcode 

The therorem of deMorgan 

A AND B =NOT ((NOT A) OR (NOT 
B)) 

tells us. that for every theorem on AND 
there is a dual theorem for OR (and vice 
versa). Applying this to 

IF A!B ;Mcode 

you get 

IF 'A'&'B ;Mcode 

which may be rewritten as 

IF 'A&'B 
ELSE ;Mcode 

and, finally: 

IF 'A, 'B 
ELSE ;Mcode 

September 1994 



But be careful. $TEST is different after 
this replacement code (use IF '$TEST 
instead of ELSE to get the same $TEST 
value). 

If you think IF 'A, 'B is confusing, 
then replace IF A! B by 

IF A 
ELSE IF B 
IF ;Mcode 

These methods can be used to restate 
IF arguments of great complexity 
without & or ! . For example, 

IF A&B!C!D 

goes to 

IF A,B 
. ELSE IF C 

ELSE IF D 
IF ;Mcode 

Logical AND in the postconditional of 
a DO' GOTO' or XE CUTE is as simple as 
splitting the expressions between 
command and argument. 

DO:A&B LABEL 

is to be replaced by 

DO:A LABEL:B 

If you cannot refrain from using GOTO 
you might see the situation of GOTO 

GOTO:A!B LABEL 

We possibly avoid the evaluation of B 

by repeating the argument with both 
conditions: 

GOTO LABEL:A,LABEL:B 

Using the same replacement for DO or 
XECUTE is improper: 

DO LABEL:A,LABEL:B 

might result in two calls to LABEL. 

In the situation of QUIT 

QUIT:A!B 

you simply repeat the command with 
both conditions: 

QUIT:A QUIT:B 

September 1994 

In arbitrary situations it is always pos
sible to avoid the evaluation of B with 
the help of the $SELECT function: 

A&B may be replaced by 

$SELECT( 'A:O, 'B:0,1:1) 

or by 

$SELECT(A:B,l:O) 

(if B is Boolean or if the result is sub
ject to Boolean interpretation). 

A! B may be replaced by 

$SELECT(A:l,B:l,l:O) 

or by 

$SELECT(A:l,l:B) 

(if B is Boolean or if the result is sub
ject to Boolean interpretation). 

A'&B may be replaced by 

$SELECT( 'A:l, 'B:l,1:0) 

or by 

$SELECT( 'A:l,l: 'B) 

A'! B may be replaced by 

$SELECT(A:O,B:O,l:l) 

or by 

$SELECT(A:O,l: 'B) 

That trick may be generalized to mul
tiple ANDS or ORS: 

A&B&C -> $S( 'A:O, 'B:O, 'C:0,1:1) 
A!B!C -> $S(A:l,B:l,C:l,l:O) 
A&B!C -> $S(C:l, 'A:O, 'B:0,1:1) 
A!B&C -> $S('C:O,A:l,B:l,l:O) 

While the replacements in these ex
amples look more complex, in many 
real-world problems they may be 
even more readable. A typical mind 
does not grasp complex Boolean ex
pressions very efficiently. Therefore 
we frequently see an improvement in 
readability if any expression with 
many ANDS or ORS is split up into con
venient morsels. 

If the evaluation of subexpressions 
can be side-stepped, look carefully 
for which one to avoid. Among the 
criteria are: 

• Complexity of subexpression (e.g., 
extrinsic functions); 

• Evaluation time (extrinsic function, 
global); and 

• Among equally "expensive" subex
pressions, place the expression first 
in $SELECT, which evaluates TRUE 
more often than the other subex
pression. 

Readability and reliability are inti
mately connected. So apply these 
tricks only in a way that does not pro
duce obscure code. .M 

Winfried Gerum is with Winner Software 
GmbH located in Rottenbach, Germany. 
Contact him by phone at 49-9195-940022 
or by fax at 49-9195-940030. His column 
appears regularly in M Computing and in 
European publications oh M. 

Coming in November 

• • • Client/Server Technology 

• • • Insights from Translating 
FileMan in China 

•••Three-Year Index of MUMPS 
Computing and M Computing 

And much more! 

.M COMPUTING 39 


