TIPS ‘N’

TRICKS

Efficiency in Boolean Expressions

Winfried Gerum

inary logic is supposed to be a
B big strength for computers (un-

fortunately, the same is not true
for humans). It is much simpler than
addition and multiplication. A simple
truthtable in principle tells you every-
thing to be told about the main Bool-
ean operations:

by Winfried Gerum

OxA always
1xxN always
0&A always
0'&A always
11A always
0'!B always

OD—'D—'OI—'VO

With the multiplication or the expo-
nentiation the exception seems to be
a rare case that does not need special
attention. But with the Boolean oper-
ators, the first operand alone deter-
mines the result in 50 percent of the
cases. That situation indeed warrants
some attention. Most programming
languages do not pay special attention
to this. The C programming language
actually avoids evaluation of the sec-
ond argument in Boolean operations.
Programmers who are not aware of
this may get funny results when writ-
ing code such as:

A B AAND B [AORB inM |4 B A%B [A!B
FALSE |FALSE |FALSE FALSE 0 0 0 0
FALSE |TRUE FALSE TRUE 0 1 0 1
TRUE FALSE |FALSE TRUE 1 0 0 1
TRUE TRUE TRUE TRUE 1 1 1 1
Occasionally programmers pick the- if ({(»a <'A&7) | |(sa++>="2Z"))(...);

wrong one of these operators, because
in common parlance and or or are not
used as precisely as And or Or in for-
mal logic. A quick glance at the above
table tells you that writing an AND in-
.stead of an or gives you the same re-
sult in half the cases. This is the rea-
son that in a test run of a routine you
may get the proper result despite a
programming error. So be careful
when using these operators.

In M, all binary operators evaluate
both operands, even if the first op-
erand alone determines the result:

38 M COMPUTING

the pointer a is not incremented
(a++) unless the right side of the or
(11 is evaluated.

In standard M, as stated above, both
sides always are evaluated. This is
more reasonable if one wants to re-
duce side effects. But it is not without
surprise either:

IF $D(A)&(A>5)

this will give an error in standard M,
if$D(4) [0 (i.e., unsubscripted A is un-
defined). It will work under GTM
(Greystone Technology), however.

There is no point in arguing for a
change in the language standard in
this regard. Such a change would not
be backward compatible due to error
processing and the notorious naked
reference.

If A and B in the above examples stand
just for simple local variables, we
need not make much fuss about it. But
they stand for expressions of arbitrary
complexity, which might be worth-
while not to evaluate.

Logical aND can be done efficiently in
IF arguments in a straightforward
way:

IF A&B ;Mcode

may be replaced by
IF A,B ;Mcode

'The therorem of deMorgan

A AND B = NOT ((NOT A) OR (NOT
B}) '

tells us that for every theorem on AND
there is a dual theorem for 6r (and vice
versa). Applying this to

IF A!B ;Mcode
you get

IF 'A’'&'B ;Mcode

- which may be rewritten as

IF 'A&'B
ELSE ;Mcode

and, finally:

IF 'A,’'B
ELSE ;Mcode

September 1994

Butbe careful. $TEST is different after
this replacement code (use IF '$TEST
instead of ELSE to get the same $TEST
value). '

If you think IF ‘a,’B is confusing,
then replace 1IF A!B by

IF A
ELSE IF B
IF ;Mcode

These methods can be used to restate
IF arguments of great complexity
without & or !. For example,

IF A&B!C!D

goes to

IF A,B

. ELSE IF C
ELSE IF D
IF ;Mcode

Logical aND in the postconditional of
a DO, GOTO, Or XECUTE is as simple as
splitting the expressions between
command and argument.

DO:A&B LABEL

is to be replaced by
DO:A LABEL:B
If you cannot refrain from using GoTo
you might see the situation of coTo
GOTO:A!B LABEL
We possibly avoid the evaluation of B

by repeating the argument with both
conditions:

GOTO LABEL:A,LABEL:B

Using the same replacement for o or
XECUTE is improper:

DO LABEL:A,LABEL:B
might result in two calls to LABEL.

In the situation of QuIT
QUIT:A!B

you simply repeat the command with
both conditions:

QUIT:A QUIT:B

September 1994

In arbitrary situations it is always pos-
sible to avoid the evaluation of B with
the help of the $sELECT function:
A&B may be replaced by
$SELECT('A:0, 'B:0,1:1)
or by
$SELECT(A:B,1:0)
(if B is Boolean or if the result is sub-
ject to Boolean interpretation).
A1B may be replaced by
$SELECT(A:1,B:1,1:0)
or by
$SELECT(A:1,1:B)

(if B is Boolean or if the result is sub-
ject to Boolean interpretation).

A'&B may be replaced by
$SELECT('A:1,’B:1,1:0)
or by
$SELECT('A:1,1:'B)

A'1B may be replaced by
$SELECT(A:0,B:0,1:1)
or by

$SELECT(A:0,1:'B)

That trick may be generalized to mul-
tiple ANDSs or ORS:

A&B&C —> $3('A:0,'B:0,’C:0,1:1)
A'BIC -—> $S(A:1,B:1,C:1,1:0)
A&B!C —> $S(C:1,'A:0,'B:0,1:1)
AIB&C —> $S('C:0,A:1,B:1,1:0)

While the replacements in these ex-
amples look more complex, in many
real-world problems they may be
even more readable. A typical mind
does not grasp complex Boolean ex-
pressions very efficiently. Therefore
we frequently see an improvement in
readability if any expression with
many ANDS Or ORs is split up into con-
venient morsels.

If the evaluation of subexpressions
can be side-stepped, look carefully
for which one to avoid. Among the
criteria are:

* Complexity of subexpression (e.g.,
extrinsic functions);

+» Evaluation time (extrinsic function,
global); and

¢ Among equally “expensive” subex-
pressions, place the expression first
in $sSELECT, which evaluates TRUE
more often than the other subex-
pression.

Readability and reliability are inti-
mately connected. So apply these
tricks only in a way that does not pro-
duce obscure code. m

Winfried Gerum is with Winner Software
GmbH located in Roéttenbach, Germany.
Contact him by phone at 49-9195-940022
or by fax at 49-9195-940030. His column
appears regularly in M Computing and in
European publications on M.

Coming in November

* o o Client/Server Technology

» ¢ ¢ [nsights from Translating
FileMan in China

o o Three-Year Index of MUMPS
Computing and M Computing

And much more!

M COMPUTING 39

