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TRICKS 

Nugget or Fool's Gold? 
-The Modulo Operator 

Winfried Gerum 

Usually M textbooks and manu
als do not devote too much 
time to the operators. There 

seems to be no need to explain the ba
sic arithmatic operators "+", "-", 
"*", "!" as all but children take them 
for granted. Other operators are per
ceived as self-explanatory as well, as 
they are known from other program
ming languages, e.g., exponentiation 
"**",comparisons">","<", and the 
logical operators "!", "&". 

The modulo operator # and its defi
nition is not so straightforward be
cause there is no universally accepted 
symbol to denote it. Young children 
are not introduced to this operator. 
Teachers of calculus and other higher 
mathematics rarely feel the need to 
explain such easy concepts as basic 
operators. 

The standard says this about the mod
ulo operator: 

(1) # produces the value of the 
left operand modulo the 
right argument. It is 

April 1994 

by Winfried Gerum 

defined for nonzero values 
of the right operand as 
follows: 
A#B= A - (B*floor(A/B)) 
where floor(x) = the 
largest integer '>x. 

Since this definition seems clumsy, 
few take the trouble to look at the de
tails. But it is worth it to take a few 
minutes to do so: First, because it is 
important to avoid confusion with a 
modulo operation in other program
ming languages and, second, to make 
the best use of the M modulo op
erator. 

Looking at various assemblers, it is 
quite common that there is an integer 
division operation that gives the result 
of the division as an integer in one 
register and the remainder in another 
register. So it seems quite natural that 
a high-level language makes an oper
ation available resulting in a remain
der. Coming from this side it seems to 
be a given that 

(2) (A "DIV" B * B + (A "MOD" B)' 
) = A 

As long as both operands are positive 
integers, there is consensus among 
various programming languages as to 
how that modulo operator should 
function. If B is zero, or if A or B are 
negative, there is no longer a consen
sus. Division is not defined with a di
visor of zero. The modulo operator 
just inherits this error condition from 
the related division. Some program
·ming languages prefer to return zero 
as a result of A "MOD" o. 

With negative values of the operands, 
there are two lines of thinking. One is 
to implement the mathematic.al con
cept of residue classes. The other one 
is to have the "remainder" of a divi
sion, with the idea of computing the 
numeric values regardless of the signs 
and fixing the signs after the computa
tion. Some programming languages 
are mute on the definition. They 
call the behavior implementation
dependent. This gives implementors 
a choice of pursuing their own philos
ophy or passing the philosophy of the 
underlying processor. 

It is of little value to leave this to an 
implementor's whims. So in this case 
it is advantageous if a language stan
dard gives positive guidance. But M 
is more: It gives the "right" definition 
by providing the mathematical con
cept of residue classes. Only ALGOL 
(a superb but almost forgotten lan
guage) has the same definition for its 
"MOD" operator. 

Some time ago, the MUMPS Devel
opment Committee (MDC) got a re
quest to fix the modulo problem. In 
M, there is no modulo problem, per
haps except that some people are not 
aware of the consequences of the defi
nition of the modulo operator in the 
language. Therefore, I include some 
examples of what can be done with it 
lat~r in the column. 

The people unfamiliar with a "mod
ulo" operator might think that this op
erator is of little importance in every
day life. But cyclical things are very 
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common in our lives indeed. Time is 
organized into cycles of various 
length. Data are stored in blocks of 
512 bytes or a multiple. Bits of data 
are grouped into bytes. Goods are 
stored in packages of certain sizes. 
Modulo operator will be very handy 
in dealing with cyclical items. 

In M, there is no modulo 
problem, perhaps except 
that some people are not 

aware of the consequences 
of the definition of the 

modulo operator in 
the language. 

The definition of modulo implies that 
all the following formulas and identi
ties hold for positive as well as nega
tive numbers. But be careful: (2) 
above is not an identity valid for arbi
trary numbers. It holds just for posi
tive numbers, because the symmet
ries of "Integer Division \" are 
different from those of modulo! 

These are examples of modulo com
putations in M: 

(3a) A=+l5, B=+7 => A#B = 1 

(3b) A~l5, B=+7 => A#B = 6 

(3c) A=+l5, B=-7 => A#B =· -6 

(3d) A~l5, B=-7 => A#B = -1 

The definition of modulo gives the 
following identities: 

(A, B are real; M, N are integers) 

(4) O#M = O (zero) 

(5) (A#M) = -(-A#-M) (symmetry) 

(6) (A#M) = ( (A+(N*M) )#M) 
(shift invariance) 

(7) (A#M + (B#M))#M = (A+B)#M 

(8) (A#(M*N)#N) = (A#N) 
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Because these identities hold for any 
real numbers, this definition of mod
ulo is mathematically far superior to 
the definition used in other program
ming languages. 

Formula (5) is of little practical im
portance. It just says that (3a) vs. (3d) 
and (3b) vs. (3c) are symmetric. (3a) 
and (3b) show what the modulo does. 
Some people take only (3a) seriously 
and take (3b) just for a mathematical 
curiosity. It is not. 

The modulo operator gives the differ
ence between a value (a number) and 
cyclical boundaries. The amazing 
thing is that the lower and the higher 
boundaries can be probed: $H#7 gives 
the days since this past Thursday (and 
0 if $H indicates Thursday). Like
wise -$H#7 gives the number of days 
until next Thursday (and 0 if $Hindi
cates Thursday). Every M program
mer knows that 1840112/31 was a 
Thursday, because $H started there 
and obviously 0#7 is 0. Before that 
Thursday comes Wednesday. The 
day 1840/12/30 has a +$H value of -
1. Take that modulo 7 and you get 6, 
correctly indicating Wednesday. 

Often you see the modulo operator 
used in conjunction with the division 
\ to extract bits from an integer. 

I\64#2 

gives Bit 6 of Integer I. It is used in 
conjunction with \ to split a number 
into its integer and its fraction (the 
numbers should not be negative!). 

; does not work if X<O 
W "Integer part 11 ,X\l, 11 fractio 
n part 11 ,X#l 
; valid for any X 
W "Integer part ",X\l," fractio 
n part 11 ,+( 11 • 11 _$P(+X, 11 • 11 ,2)) 

Frequently # is used after a $DATA 
value: 

$DATA(X)#2 or $DATA(X)#5 or $DA 
TA(X)#lO 

to determine whether $DATA ( x) is 1 or 
11. A nice curiosity is 

W "$D(X) is ",$P("zeroAoneAten 
Aeleven11

,
11 A11 ,$D(X)#4+1) 

To compute cyclical functions, again, 
it is very convenient to reduce all pos
sible argument values by a simple # 
operation to values within one cycle: 

SIN(X)=SIN(X#(2*PI)) 

Before making the modulo operation, 
you are allowed to add or subtract any 
integer multiple of the modulus for 
the same result: 

(A+(N*M))#M = (A#M) 

E.g., 

(SIZE+l023)#1024 is equivalent 
to (SIZE-1)#1024 

likewise 

(H+672411)#7 is equivalent to 
(H+5)#7 

Random number algorithms seem to 
be of little concern to M program
mers, as the language provides a 
$RANDOM function. The problem is that 
you do not have control over the 
$RANDOM algorithm. Test runs cannot 
be reproduced identically. Ther(ffore, 
occasionally you have to code your 
own random function. The most pop
ular family of random algorithms is 
called the linear congruential method 
and it uses the modulo operator: 

(9) Rn+i = (R. * A + B) # C 

With A, B, and C integers and relative 
prime, it yields random integers be
tween 0 and (C-1). It is not trivial to 
select good values for A, B, and C. 
For details see Donald E. Knuth's The 
Art of Computer Programming.[l] 
The good old TI~59 had the follow
ing values: A=24298, B=99991, 
C=199017. 

Typical problems of a cyclical nature 
are: 
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( 1) Compute day of the week from $H 
fonnat date. 
(2) When was the last Sunday? 
(3) When will the next Sunday be? 
( 4) Convert seconds to hours, min
utes, seconds. 
(5) How many seconds are there to the 
next full hour? 
(6) A vending machine accepts quar
ters only. Calculate the vending price. 
(7) Compute the number of crates 
needed to package items for several 
orders. 

Solutions to the above problems in M 
are as follows: 

Problem 1: 

; Compute day of the week from 
+$H format day: 
WRITE H," is a ",$$DOW(H) 

The fonnula looks very simple (see 
box). Note that values of Hare not re
stricted to positive integers. The con
cept of $H fonnat extends naturally to 
negative numbers. This function 
serves these negative values as well. 

Trying to port this code to other pro
gramming languages with a different 
definition of modulo is not straight
forward at all! 

Problem 2: 

; Compute next Sunday 
Write "Last Sunday was on $H=" 
,$$LAST(+$H,3) 

Problem 3: 

; Compute next Sunday 
Write "next Sunday is $H=". 
$$NEXT(+$H,3) 

Problem4: 

Write S," is ",$$SEC(S) 

Problem 5: 

S SEC~$P($H,",".2)#3600 
IF SEC WRITE "The bell rings in' 
",SEC 
ELSE WRITE "The bell rings now" 

Problem 6: 

S VPRICE=-RAWPRICE#.25+RAWPRICE 

Problem 7: 

Let ORDER be an array of 
orders with order numbers 1 
through N. The number of 

MOD ;demonstrations of the modulo operator 
Q 
;Extract Bit N from integer I (l=LSB) 

EBIT(I,N) Q I\(2**(N-1))#2 
;Set Bit N in integer I (l=LSB) 

SBIT(I,N) Q:$$EBIT(I,N) IQ I+(2**(N-l)) 
;Clear Bit N in integer I (l=LSB) 

CBIT(I,N) Q: '$$EBIT(I,N) IQ I-(2**(N-l)) 
;floor function: largest integer '>X 

FLOOR(X) Q X-(X#l) 
;ceiling function: smallest integer '<X 

CEIL(X) Q X+(-X#l) 
;Compute day of the week 
;H=Date in +$H-format (may be zero or negative) 
;Returns name of the appropriate day of the week 

DOW(H) QUIT $PIECE( "ThursAFriASaturASunAMonATuesAWednes". ll/\l_I. H#7+1 )_"day" 
;Compute last ... day 
;H=Date in +$H-format (may be zero or negative) 
;!DOW= DayOfWeek O=Thursday, l=Friday, ... 6=Wednesday 
;if DayOfWeek of H is !DOW. return H 

LASTO(H,IDOW) Q H-(H-IDOW#7) ;or IDOW-H#-7+H without brackets 
;Compute last ... day 
;H=Date in +$H-format (may be zero or negative) 
;!DOW= DayOfWeek O=Thursday, l=Friday, ... 6=Wednesday 
;if DayOfWeek of H is !DOW, return H-7 

LAST(H,IDOW) Q $$NEXTO(H,IDOW)-7 
;Compute next ... day 
;H=Date in +$H-format (may be zero or negative) 
;!DOW= DayOfWeek O=Thursday, l=Friday, ... 6=Wednesday 
;if DayOfWeek of H is !DOW, return H 
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items ordered for order#i 
are stored under ORDER(i). 
The shipments are packaged in 
crates holdiD.g SIZE items. 

Then $$PACKO($NAME(ORDER), 
SIZE) or $$PACK1($NA(ORDER, 
SIZE)) gives the number of 
crates needed to ship these 
items. Note that this is the 
same problem as computing the 
number of blocks needed to 
store a number of files. 

The modulo operator isn't fool's gold 
at all. As you have seen, its defini
tion has been done with great care to
make it another nugget in M Tech
nology. M 

Winfried Gerum's column appears regu
larly in M Computing. He is president of 
Winner Software GmbH in Roettenbach, 
Germany. 

Endnote 
1. D.E. Knuth, The Art of Computer Pro
gramming, 2:3 (Reading, MA: Addison
Wesley Press, 1968). 
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NEXTO(H,IDOW) Q H+(-H+IDOW#7) ;or IDOW-H#7+H without brackets 
;Compute next ... day 
;H=Date in +SH-format (may be zero or negative) 
;!DOW= DayOfWeek O=Thursday, !=Friday, ... 6=Wednesday 
;if DayOfWeek of His !DOW, return H+7 

NEXT(H,IDOW) Q SSLASTO(H,IDOW)+7 

SEC(S) Q S\3600_" hrs "_(S#3600\60)_" min 11_(S#60)_11 sec" 
;pack imtms 

PACKO(ARRAY,PAKSIZE) N SIZE,TOTAL,X 
Q: 'SG(PAKSIZE) "" 
S TOTAL=O,X="" 
F - S X=SO(@ARRAY@(X)) Q:X="ri S SIZE=@ARRAY@(X) D 
.S TOTAL~S!ZE#PAKSIZE+SIZE+TOTAL 
Q TOTAL\PAKSIZE 

PACKl(ARRAY,PAKSIZE) N SIZE,TOTAL,X 
Q: 'SG(PAKSIZE) "" 
S TOTAL=O, X='"' 
F S X=SO(@ARRAY@(X)) Q:X="" S SIZE=@ARRAY@(X)/PAKSIZE D 
.S TOTAL=SIZE\l+(SIZE#l>O)+TOTAL 
Q TOTAL 

Figure 1. Selected demonstrations of the modulo operator. 

Correction 
The February M Computing inadvertently omitted some characters in figures 1 and 2 of the Tips 'n' Tricks column. Here are the 
corrected and complete figures. 

;Input params: IN=input dev, OUT=output dev, must be OPEN 
CMPR(IN,OUT) NEW C,I,IO,OFS,X,Y 
+l SET IO=SIO 
+2 KILL AUTILITY(SJOB) 
+3 SET A(SJOB,0)=0 FOR C=0:1:255 SET A(C)=C 
+4 SET X~l FOR DO QUIT:X=-1 
+5 USE IN SET Y=SJOB IF SDATA(AUTILITY(Y)) 
+6 IF X<O READ *x IF SSEndOfFile() QUIT 
+7 FOR I=O:l QUIT:'SDATA(A(Y,X)) SET OFS="(X),Y=X READ *x QUIT:I>31 IF SSEndOfFile SET X=-1 QUIT 
+8 IF X>-l,I<32,C<32766, 'SDATA(A(X)) SET C=C+l,A(X)=C 
+9 USE OUT WRITE *OFS\256+(STEST*l28),*0FS#256 
+10 . IF WRITE *X SET X=-2 
+11 USE IO KILL AUTILITY(SJOB) 
+12 QUIT 

. Figure 1. The compression algorithm. 

;Input params: IN=input dev, OUT=output dev, must be OPEN 
DCMPR(IN,OUT) NEW C,IO,OFS,X,Y,Z 
+l SET IO=SIO 
+2 KILL AUTILITY(SJOB) 
+3 SET A(SJOB,0)=0 FOR C=O:l:255 SET A(C)=SCHAR(C) 
+4 FOR DO QUIT:X<O 
+5 USE IN READ *x IF SSEndOfFile() SET X=-1 QUIT 
+6 READ *y IF X>l27 SET X=X-128 READ *z 
+7 USE OUT SET OFS=X*256+Y WRITE A(OFS) 
+8 IF WRITE *z SET C=C+l,A(C)=A(OFS)_SCHAR(Z) 
+9 USE IO KILL AUTILITY(SJOB) 
+10 QUIT 

Figure 2. The decompression algorithm. 
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