
TIPS 'N'
TRICKS

Nugget or Fool's Gold?
-The Modulo Operator

Winfried Gerum

Usually M textbooks and manu
als do not devote too much
time to the operators. There

seems to be no need to explain the ba
sic arithmatic operators "+", "-",
"*", "!" as all but children take them
for granted. Other operators are per
ceived as self-explanatory as well, as
they are known from other program
ming languages, e.g., exponentiation
"**",comparisons">","<", and the
logical operators "!", "&".

The modulo operator # and its defi
nition is not so straightforward be
cause there is no universally accepted
symbol to denote it. Young children
are not introduced to this operator.
Teachers of calculus and other higher
mathematics rarely feel the need to
explain such easy concepts as basic
operators.

The standard says this about the mod
ulo operator:

(1) # produces the value of the
left operand modulo the
right argument. It is

April 1994

by Winfried Gerum

defined for nonzero values
of the right operand as
follows:
A#B= A - (B*floor(A/B))
where floor(x) = the
largest integer '>x.

Since this definition seems clumsy,
few take the trouble to look at the de
tails. But it is worth it to take a few
minutes to do so: First, because it is
important to avoid confusion with a
modulo operation in other program
ming languages and, second, to make
the best use of the M modulo op
erator.

Looking at various assemblers, it is
quite common that there is an integer
division operation that gives the result
of the division as an integer in one
register and the remainder in another
register. So it seems quite natural that
a high-level language makes an oper
ation available resulting in a remain
der. Coming from this side it seems to
be a given that

(2) (A "DIV" B * B + (A "MOD" B)'
) = A

As long as both operands are positive
integers, there is consensus among
various programming languages as to
how that modulo operator should
function. If B is zero, or if A or B are
negative, there is no longer a consen
sus. Division is not defined with a di
visor of zero. The modulo operator
just inherits this error condition from
the related division. Some program
·ming languages prefer to return zero
as a result of A "MOD" o.

With negative values of the operands,
there are two lines of thinking. One is
to implement the mathematic.al con
cept of residue classes. The other one
is to have the "remainder" of a divi
sion, with the idea of computing the
numeric values regardless of the signs
and fixing the signs after the computa
tion. Some programming languages
are mute on the definition. They
call the behavior implementation
dependent. This gives implementors
a choice of pursuing their own philos
ophy or passing the philosophy of the
underlying processor.

It is of little value to leave this to an
implementor's whims. So in this case
it is advantageous if a language stan
dard gives positive guidance. But M
is more: It gives the "right" definition
by providing the mathematical con
cept of residue classes. Only ALGOL
(a superb but almost forgotten lan
guage) has the same definition for its
"MOD" operator.

Some time ago, the MUMPS Devel
opment Committee (MDC) got a re
quest to fix the modulo problem. In
M, there is no modulo problem, per
haps except that some people are not
aware of the consequences of the defi
nition of the modulo operator in the
language. Therefore, I include some
examples of what can be done with it
lat~r in the column.

The people unfamiliar with a "mod
ulo" operator might think that this op
erator is of little importance in every
day life. But cyclical things are very

M COMPUTING 53

common in our lives indeed. Time is
organized into cycles of various
length. Data are stored in blocks of
512 bytes or a multiple. Bits of data
are grouped into bytes. Goods are
stored in packages of certain sizes.
Modulo operator will be very handy
in dealing with cyclical items.

In M, there is no modulo
problem, perhaps except
that some people are not

aware of the consequences
of the definition of the

modulo operator in
the language.

The definition of modulo implies that
all the following formulas and identi
ties hold for positive as well as nega
tive numbers. But be careful: (2)
above is not an identity valid for arbi
trary numbers. It holds just for posi
tive numbers, because the symmet
ries of "Integer Division \" are
different from those of modulo!

These are examples of modulo com
putations in M:

(3a) A=+l5, B=+7 => A#B = 1

(3b) A~l5, B=+7 => A#B = 6

(3c) A=+l5, B=-7 => A#B =· -6

(3d) A~l5, B=-7 => A#B = -1

The definition of modulo gives the
following identities:

(A, B are real; M, N are integers)

(4) O#M = O (zero)

(5) (A#M) = -(-A#-M) (symmetry)

(6) (A#M) = ((A+(N*M))#M)
(shift invariance)

(7) (A#M + (B#M))#M = (A+B)#M

(8) (A#(M*N)#N) = (A#N)

54 a COMPUTING

Because these identities hold for any
real numbers, this definition of mod
ulo is mathematically far superior to
the definition used in other program
ming languages.

Formula (5) is of little practical im
portance. It just says that (3a) vs. (3d)
and (3b) vs. (3c) are symmetric. (3a)
and (3b) show what the modulo does.
Some people take only (3a) seriously
and take (3b) just for a mathematical
curiosity. It is not.

The modulo operator gives the differ
ence between a value (a number) and
cyclical boundaries. The amazing
thing is that the lower and the higher
boundaries can be probed: $H#7 gives
the days since this past Thursday (and
0 if $H indicates Thursday). Like
wise -$H#7 gives the number of days
until next Thursday (and 0 if $Hindi
cates Thursday). Every M program
mer knows that 1840112/31 was a
Thursday, because $H started there
and obviously 0#7 is 0. Before that
Thursday comes Wednesday. The
day 1840/12/30 has a +$H value of -
1. Take that modulo 7 and you get 6,
correctly indicating Wednesday.

Often you see the modulo operator
used in conjunction with the division
\ to extract bits from an integer.

I\64#2

gives Bit 6 of Integer I. It is used in
conjunction with \ to split a number
into its integer and its fraction (the
numbers should not be negative!).

; does not work if X<O
W "Integer part 11 ,X\l, 11 fractio
n part 11 ,X#l
; valid for any X
W "Integer part ",X\l," fractio
n part 11 ,+(11 • 11 _$P(+X, 11 • 11 ,2))

Frequently # is used after a $DATA
value:

$DATA(X)#2 or $DATA(X)#5 or $DA
TA(X)#lO

to determine whether $DATA (x) is 1 or
11. A nice curiosity is

W "$D(X) is ",$P("zeroAoneAten
Aeleven11

,
11 A11 ,$D(X)#4+1)

To compute cyclical functions, again,
it is very convenient to reduce all pos
sible argument values by a simple #
operation to values within one cycle:

SIN(X)=SIN(X#(2*PI))

Before making the modulo operation,
you are allowed to add or subtract any
integer multiple of the modulus for
the same result:

(A+(N*M))#M = (A#M)

E.g.,

(SIZE+l023)#1024 is equivalent
to (SIZE-1)#1024

likewise

(H+672411)#7 is equivalent to
(H+5)#7

Random number algorithms seem to
be of little concern to M program
mers, as the language provides a
$RANDOM function. The problem is that
you do not have control over the
$RANDOM algorithm. Test runs cannot
be reproduced identically. Ther(ffore,
occasionally you have to code your
own random function. The most pop
ular family of random algorithms is
called the linear congruential method
and it uses the modulo operator:

(9) Rn+i = (R. * A + B) # C

With A, B, and C integers and relative
prime, it yields random integers be
tween 0 and (C-1). It is not trivial to
select good values for A, B, and C.
For details see Donald E. Knuth's The
Art of Computer Programming.[l]
The good old TI~59 had the follow
ing values: A=24298, B=99991,
C=199017.

Typical problems of a cyclical nature
are:

April 1994

(1) Compute day of the week from $H
fonnat date.
(2) When was the last Sunday?
(3) When will the next Sunday be?
(4) Convert seconds to hours, min
utes, seconds.
(5) How many seconds are there to the
next full hour?
(6) A vending machine accepts quar
ters only. Calculate the vending price.
(7) Compute the number of crates
needed to package items for several
orders.

Solutions to the above problems in M
are as follows:

Problem 1:

; Compute day of the week from
+$H format day:
WRITE H," is a ",$$DOW(H)

The fonnula looks very simple (see
box). Note that values of Hare not re
stricted to positive integers. The con
cept of $H fonnat extends naturally to
negative numbers. This function
serves these negative values as well.

Trying to port this code to other pro
gramming languages with a different
definition of modulo is not straight
forward at all!

Problem 2:

; Compute next Sunday
Write "Last Sunday was on $H="
,$$LAST(+$H,3)

Problem 3:

; Compute next Sunday
Write "next Sunday is $H=".
$$NEXT(+$H,3)

Problem4:

Write S," is ",$$SEC(S)

Problem 5:

S SEC~$P($H,",".2)#3600
IF SEC WRITE "The bell rings in'
",SEC
ELSE WRITE "The bell rings now"

Problem 6:

S VPRICE=-RAWPRICE#.25+RAWPRICE

Problem 7:

Let ORDER be an array of
orders with order numbers 1
through N. The number of

MOD ;demonstrations of the modulo operator
Q
;Extract Bit N from integer I (l=LSB)

EBIT(I,N) Q I\(2**(N-1))#2
;Set Bit N in integer I (l=LSB)

SBIT(I,N) Q:$$EBIT(I,N) IQ I+(2**(N-l))
;Clear Bit N in integer I (l=LSB)

CBIT(I,N) Q: '$$EBIT(I,N) IQ I-(2**(N-l))
;floor function: largest integer '>X

FLOOR(X) Q X-(X#l)
;ceiling function: smallest integer '<X

CEIL(X) Q X+(-X#l)
;Compute day of the week
;H=Date in +$H-format (may be zero or negative)
;Returns name of the appropriate day of the week

DOW(H) QUIT $PIECE("ThursAFriASaturASunAMonATuesAWednes". ll/\l_I. H#7+1)_"day"
;Compute last ... day
;H=Date in +$H-format (may be zero or negative)
;!DOW= DayOfWeek O=Thursday, l=Friday, ... 6=Wednesday
;if DayOfWeek of H is !DOW. return H

LASTO(H,IDOW) Q H-(H-IDOW#7) ;or IDOW-H#-7+H without brackets
;Compute last ... day
;H=Date in +$H-format (may be zero or negative)
;!DOW= DayOfWeek O=Thursday, l=Friday, ... 6=Wednesday
;if DayOfWeek of H is !DOW, return H-7

LAST(H,IDOW) Q $$NEXTO(H,IDOW)-7
;Compute next ... day
;H=Date in +$H-format (may be zero or negative)
;!DOW= DayOfWeek O=Thursday, l=Friday, ... 6=Wednesday
;if DayOfWeek of H is !DOW, return H

April 1994

items ordered for order#i
are stored under ORDER(i).
The shipments are packaged in
crates holdiD.g SIZE items.

Then $$PACKO($NAME(ORDER),
SIZE) or $$PACK1($NA(ORDER,
SIZE)) gives the number of
crates needed to ship these
items. Note that this is the
same problem as computing the
number of blocks needed to
store a number of files.

The modulo operator isn't fool's gold
at all. As you have seen, its defini
tion has been done with great care to
make it another nugget in M Tech
nology. M

Winfried Gerum's column appears regu
larly in M Computing. He is president of
Winner Software GmbH in Roettenbach,
Germany.

Endnote
1. D.E. Knuth, The Art of Computer Pro
gramming, 2:3 (Reading, MA: Addison
Wesley Press, 1968).

M COMPUTING 55

NEXTO(H,IDOW) Q H+(-H+IDOW#7) ;or IDOW-H#7+H without brackets
;Compute next ... day
;H=Date in +SH-format (may be zero or negative)
;!DOW= DayOfWeek O=Thursday, !=Friday, ... 6=Wednesday
;if DayOfWeek of His !DOW, return H+7

NEXT(H,IDOW) Q SSLASTO(H,IDOW)+7

SEC(S) Q S\3600_" hrs "_(S#3600\60)_" min 11_(S#60)_11 sec"
;pack imtms

PACKO(ARRAY,PAKSIZE) N SIZE,TOTAL,X
Q: 'SG(PAKSIZE) ""
S TOTAL=O,X=""
F - S X=SO(@ARRAY@(X)) Q:X="ri S SIZE=@ARRAY@(X) D
.S TOTAL~S!ZE#PAKSIZE+SIZE+TOTAL
Q TOTAL\PAKSIZE

PACKl(ARRAY,PAKSIZE) N SIZE,TOTAL,X
Q: 'SG(PAKSIZE) ""
S TOTAL=O, X='"'
F S X=SO(@ARRAY@(X)) Q:X="" S SIZE=@ARRAY@(X)/PAKSIZE D
.S TOTAL=SIZE\l+(SIZE#l>O)+TOTAL
Q TOTAL

Figure 1. Selected demonstrations of the modulo operator.

Correction
The February M Computing inadvertently omitted some characters in figures 1 and 2 of the Tips 'n' Tricks column. Here are the
corrected and complete figures.

;Input params: IN=input dev, OUT=output dev, must be OPEN
CMPR(IN,OUT) NEW C,I,IO,OFS,X,Y
+l SET IO=SIO
+2 KILL AUTILITY(SJOB)
+3 SET A(SJOB,0)=0 FOR C=0:1:255 SET A(C)=C
+4 SET X~l FOR DO QUIT:X=-1
+5 USE IN SET Y=SJOB IF SDATA(AUTILITY(Y))
+6 IF X<O READ *x IF SSEndOfFile() QUIT
+7 FOR I=O:l QUIT:'SDATA(A(Y,X)) SET OFS="(X),Y=X READ *x QUIT:I>31 IF SSEndOfFile SET X=-1 QUIT
+8 IF X>-l,I<32,C<32766, 'SDATA(A(X)) SET C=C+l,A(X)=C
+9 USE OUT WRITE *OFS\256+(STEST*l28),*0FS#256
+10 . IF WRITE *X SET X=-2
+11 USE IO KILL AUTILITY(SJOB)
+12 QUIT

. Figure 1. The compression algorithm.

;Input params: IN=input dev, OUT=output dev, must be OPEN
DCMPR(IN,OUT) NEW C,IO,OFS,X,Y,Z
+l SET IO=SIO
+2 KILL AUTILITY(SJOB)
+3 SET A(SJOB,0)=0 FOR C=O:l:255 SET A(C)=SCHAR(C)
+4 FOR DO QUIT:X<O
+5 USE IN READ *x IF SSEndOfFile() SET X=-1 QUIT
+6 READ *y IF X>l27 SET X=X-128 READ *z
+7 USE OUT SET OFS=X*256+Y WRITE A(OFS)
+8 IF WRITE *z SET C=C+l,A(C)=A(OFS)_SCHAR(Z)
+9 USE IO KILL AUTILITY(SJOB)
+10 QUIT

Figure 2. The decompression algorithm.

56 M COMPUTING April 1994

