
TIPS 'N'
TRICKS

Data Cotnpression
Double Your Disk Space for $49.95

Winfried Gerum

I won't try to sell you a bargain
for $49.95 as my hypothetical
"come-on" headline would sug­

gest. But if you look in various maga­
zines you may find similar offers­
such as hair restorers for bald people.
They're tempting, but do they work?
Don't dismiss bargain offers too fast.
In the computer world, for example,
we've grown accustomed to getting
ever more memory and disk space
cheaply. Old programming habits did
make extremely clever use of avail­
able resources. But our newer habits
lead us to use these resources waste­
fully. And because expectations grow
faster than budgets, there is a greater
need to curb this wastefulness. Com­
pression and decompression become
ever more feasible options, as power­
ful processors and better algorithms
make the additional burden negligible.

M traditionally makes extremely ef­
ficient use of disk space. But if you
have to deliver software to a large
number of customers, it makes a dif­
ference whether you send one or three
floppy disks. Making do with just one

22 M COMPUTING

by Winfried Gerum

floppy not only results in immediate
savings of some postage and some
floppies, it also avoids a lot of errors
in handling the stuff. In UNIX there is
the compress utility, and under MS­
DOS there are several utilities, e.g.,
PKZIP. As long as all your customers
have their systems running under
these same host operating systems,
you are best advised to use these utili­
ties. M just cannot compete.

Long-time programmers talking
about data compression will say,
"Ah, this bit-shuffling stuff is impos­
sible to do with M." Shannon coding,
Hufmann coding and the like are in­
deed bit-shuffling stuff, which is not
quite impossible to do with M but
cannot be done efficiently. Earlier
times of computer science saw just
character-oriented compression algo­
rithms. Now there are dictionary-ori­
ented compression algorithms.

Suppose you assign a number to each
word in a Webster's dictionary.
Allowing for future. enhancements,
we reserve a million numbers for a
million words. To code these num­
bers we need 20 bits (2**20 is 1 mil­
lion). This is the equivalent of 2 112
bytes for every word!

You don't have Webster's online?
There is no need to have it, at least not
for data compression's sake. The trick
is to compile the dictionary as you go!
This implies that it may take pro­
cessing some initial amount of charac­
ters before the compression becomes

effective. But there is no need to trans­
mit or store a dictionary, except during
compression or decompression.

There are several such algorithms.
Most of them can be traced back to
two basic algorithms devised by Ziv
and Lempe!. [1,2] Here is one of them
that is impossibly complicated to im­
plement in a typical computer lan­
guage. [3] But you can write down
the algorithm in plain M very
straightforwardly and easily. The re­
sulting program in figure 1 is amaz­
ingly short.

The decompression algorithm is pre­
sented in figure 2.

Despite efforts to present standard M
code in this publication, there is a
problem when it comes to 1/0. 1/0
seems to be mostly irrelevant to pro­
gramming-at least if you take the
degree of standardization as a mea­
sure of relevance.

Yes, M has standardized commands
to OPEN, USE, and CLOSE files/devices.
But there is no portable way to OPEN

a file, processing each character until
end of file. In these examples, there­
fore, I assume simply that the neces­
sary devices are already open by some
implementation-specific magic.

But OPEN/USE/CLOSE is not everything
that causes headaches: If I want to
process every character, READ v AR

may be terminated by some special
characters that I have to process as
well. I chose to use READ *VAR. This
had the desired effect of processing

February 1994

;Input params: IN=input dev, OUT=output dev, must be OPEN
CMPR(IN,OUT) NEW C,I,IO,OFS,X,Y
+l SET I0=$IO
+2 KILL AUTILITY($JOB)
+3 SET A($JOB,0)=0 FOR C=0:1:255 SET A(C)=C
+4 SET X=-1 FOR DO QUIT:X=-1
+5 USE IN SET Y=$JOB IF $DATA(AUTILITY(Y))
+6 IF X<O READ *x IF $$End0fFile() QUIT
+7 FOR I=O:l QUIT: '$DATA(A(Y,X)) SET OFS=A(X),Y=X READ *x QUIT:I>31 IF $$EndOfFile SET X=-1 QUIT
+8 IF X>-l,I<32,C<32766, '$DATA(A(X)) SET C=C+l,A(X)=C
+9 USE OUT WRITE *OFS\256+($TEST*l28),*0FS256
+10 IF WRITE *X SET X=-2
+11 USE IO KILL AUTILITY($JOB)
+12 QUIT

Figure 1. The compression algorithm.

;Input params: IN=input dev, OUT=output dev, must be OPEN
DCMPR(IN,OUT) NEW C,IO,OFS,X,Y,Z
+l SET I0=$IO
+2 KILL AUTILITY($JOB)
+3 SET A($JOB,O)=O FOR C=0:1;255 SET A(C)=$CHAR(C)
+4 FOR DO QUIT:X<O
+5 USE IN READ *x IF $$EndOfFile() SET X=-1 QUIT
+6 READ *y IF X>l27 SET X=X-128 READ *z
+7 USE OUT SET OFS=X*256+Y WRITE A(OFS)
+8 IF WRITE *z SET C=C+l,A(C)=A(OFS)_$CHAR(Z)
+9 USE IO KILL AUTILITY($JOB)
+10 QUIT

each character as it is. But you should
have a look at the standard. There you
read that the implementor may define
the values returned by READ *1 vn in a
device-dependent manner. This
translates to "do not use this in porta­
ble programs." Fortunately, the
above code works under all M imple­
mentations to which I have access.
Testing for the end-of-file condition
is also not possible in a standardized
way. So please replace $$EndOf­
File () with any code, testing for this
condition in your M implementation.
(But don't use globals in this test!)

Let's have a look at the code: In the
line CMPR (DCMPR), all variables inter­
nal to the procedure are NEwed. In the
line CMPR + 1 (DCMPR + 1) ' the current
device is saved (what about NEW$Io?).

CMPR+2 clears a scratch global.

CMPR+3 preloads the dictionary with
characters 0 through 255. The die-

February 1994

Figure 2. The decompression algorithm.

tionary in compression and decom­
pression has the same contents, but
we use a simpler structure in the de­
compression procedure. During com­
pression, strings are held on the index
level, with the $ASCII () value of each
character treated as a separate index.
The dictionary codes are held on the
data level. During decompression,
dictionary codes are held on the index
level and the complete coded strings
are held on the data level.

CMPR+5 sets up the naked indicator.

CMPR+6 reads a character, unless we
have a surplus character from previ­
ous processing.

CMPR +7 scans the dictionary built up
so far. If the new character has a dic­
tionary entry, we read an additional
character. Note that the first character
we try in this loop always has a match
in the dictionary due to preloading.
Using naked reference with two sub-

scripts changes the value of the naked
indicator, which is essential for this
procedure to work. There is no need
to store all the characters. The infor­
mation is implicit in the naked indi­
cator!

To avoid getting global references
that are too long, there is a limit of
thirty-two in the loop. On older sys­
tems you have to adjust that to lower
values (same change in following
line!). The normal termination of the
loop is when the longest entry in the
dictionary matching the current entry
has been found (code in OFS).

CMPR+8 Normally each successful
match of a string results in the defini­
tion of an additional entry into the dic­
tionary. The exceptions are when
there are no more characters (Endo r­
F il e), or when the FOR is terminated
by the length criterion, and, of

Al COMPUTING 23

course, when we cannot make more
entries into a full dictionary (2** 15
entries = 32768).

CMPR+9 The dictionary code is written
as two bytes. The high bit of the high
byte indicates whether a plain charac­
ter follows.

CMPR+ll (DCMPR+9) Clean-up.

The decompression is somewhat sim­
pler and faster.

DCMPR+5, and +6 Two bytes of the
dictionary code are read. If the high
bit of the first byte is set, a third char­
acter is read.

Figure 3 shows some examples of
compression at work. In the first line,
small.txt are the first 256 chars of this
article. In the second line, naked.txt
is a file with this article and the one
which appeared in the November 1993
issue of M Computing as ASCII files.
UMSDA.DAT is a file with fixed­
length records, supplied by the Ger­
man postal service for conversion to
the new ZIP codes. CMPR is this algo­
rithm, compress is the UNIX com­
press algorithm. File sizes are given in
bytes. Compression ratio is shown in
percentage (1-(CompressedSize/Un­
compressedSize))* 100.

file
small.txt
naked.txt
UMSDA.DAT

uncompressed
256

CMPR(M)
341 (-33.20%)
14,970 (20.72%) 18,883

9,110,247 2, 177,467 (76.10%)

Figure 3. Examples of compression at work.

DCMPR+7 writes the coded string from
the dictionary.

DCMPR + s If there has been a third char­
acter in the previous line, write it and
define a new dictionary entry.

This algorithm is as portable as M
software using 1/0 can be. It is easy
to implement. If there are alternates
in UNIX/DOS that can be used, just
use them; they are probably faster.

The algorithm does not compress
small files. It may even make very
small files larger. This is because the
first characters (8-bit) are coded by
dictionary entries (15 plus 1-bit). But
when the directory has built up some­
what, compression works the way
you would expect.

24 II COMPUTING

On small files the performance of
CMPR is ugly: A negative compres­
sion ratio means that the file is in fact
increased. The larger a file, the better
the performance. On megabyte files it
approaches the compression ratios of
UNIX compress.

The algorithm can be modified in two
directions. First, use only N bits to
code dictionary entries in the com­
pressed file, as long as there are fewer
than 2**N entries in the dictionary.
This lowers the compression thresh­
old and makes compression ratios bet­
ter. That involves some bit opera­
tions, which are unusual, albeit not
impossible, under M.

The second direction is experiment­
ing with strategies of how to proceed
when the dictionary is full. If the na­
ture of the processed data changes at
some point, it makes sense to throw
away the dictionary if the change
makes compression rates deteriorate.
That can be done easily, but it is be­
yond the scope of this article.

There are many more ways to do data
compression under M. I hope that my
demonstration of this one example en­
courages many of you to experiment
with this topic. It is possible to beat
UNIX compress with an M-based so­
lution! Meet the challenge! II

compress (UNIX)
222 (13.28%)
9,880 (47.67%)
1,577,894 (82.68%)

Winfried Gerum is president of Winner
Software GmbH in Erlangen, Germany. His
column appears regularly in M Computing.
A similar article has appeared in the MT A­
Europe newsletter.

Endnotes
1. J. Ziv and A. Lempe!, "A Universal Al­
gorithm for Sequential Data Compression,"
IEEE Transactions on Iriformation Theory
23:3 (May 1977): 337-343.
2. J. Ziv and A. Lempe!, "Compression of
Individual Sequences via Variable-rate Cod­
ing," IEEE Transactions on Information
Theory 24:5 (September 1978): 530-536.
3. Ziv and Lempe! (1978).

February 1994

