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Data Cotnpression 
Double Your Disk Space for $49.95 

Winfried Gerum 

I won't try to sell you a bargain 
for $49.95 as my hypothetical 
"come-on" headline would sug­

gest. But if you look in various maga­
zines you may find similar offers­
such as hair restorers for bald people. 
They're tempting, but do they work? 
Don't dismiss bargain offers too fast. 
In the computer world, for example, 
we've grown accustomed to getting 
ever more memory and disk space 
cheaply. Old programming habits did 
make extremely clever use of avail­
able resources. But our newer habits 
lead us to use these resources waste­
fully. And because expectations grow 
faster than budgets, there is a greater 
need to curb this wastefulness. Com­
pression and decompression become 
ever more feasible options, as power­
ful processors and better algorithms 
make the additional burden negligible. 

M traditionally makes extremely ef­
ficient use of disk space. But if you 
have to deliver software to a large 
number of customers, it makes a dif­
ference whether you send one or three 
floppy disks. Making do with just one 
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floppy not only results in immediate 
savings of some postage and some 
floppies, it also avoids a lot of errors 
in handling the stuff. In UNIX there is 
the compress utility, and under MS­
DOS there are several utilities, e.g., 
PKZIP. As long as all your customers 
have their systems running under 
these same host operating systems, 
you are best advised to use these utili­
ties. M just cannot compete. 

Long-time programmers talking 
about data compression will say, 
"Ah, this bit-shuffling stuff is impos­
sible to do with M." Shannon coding, 
Hufmann coding and the like are in­
deed bit-shuffling stuff, which is not 
quite impossible to do with M but 
cannot be done efficiently. Earlier 
times of computer science saw just 
character-oriented compression algo­
rithms. Now there are dictionary-ori­
ented compression algorithms. 

Suppose you assign a number to each 
word in a Webster's dictionary. 
Allowing for future. enhancements, 
we reserve a million numbers for a 
million words. To code these num­
bers we need 20 bits (2**20 is 1 mil­
lion). This is the equivalent of 2 112 
bytes for every word! 

You don't have Webster's online? 
There is no need to have it, at least not 
for data compression's sake. The trick 
is to compile the dictionary as you go! 
This implies that it may take pro­
cessing some initial amount of charac­
ters before the compression becomes 

effective. But there is no need to trans­
mit or store a dictionary, except during 
compression or decompression. 

There are several such algorithms. 
Most of them can be traced back to 
two basic algorithms devised by Ziv 
and Lempe!. [ 1,2] Here is one of them 
that is impossibly complicated to im­
plement in a typical computer lan­
guage. [3] But you can write down 
the algorithm in plain M very 
straightforwardly and easily. The re­
sulting program in figure 1 is amaz­
ingly short. 

The decompression algorithm is pre­
sented in figure 2. 

Despite efforts to present standard M 
code in this publication, there is a 
problem when it comes to 1/0. 1/0 
seems to be mostly irrelevant to pro­
gramming-at least if you take the 
degree of standardization as a mea­
sure of relevance. 

Yes, M has standardized commands 
to OPEN, USE, and CLOSE files/devices. 
But there is no portable way to OPEN 

a file, processing each character until 
end of file. In these examples, there­
fore, I assume simply that the neces­
sary devices are already open by some 
implementation-specific magic. 

But OPEN/USE/CLOSE is not everything 
that causes headaches: If I want to 
process every character, READ v AR 

may be terminated by some special 
characters that I have to process as 
well. I chose to use READ *VAR. This 
had the desired effect of processing 
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;Input params: IN=input dev, OUT=output dev, must be OPEN 
CMPR(IN,OUT) NEW C,I,IO,OFS,X,Y 
+l SET I0=$IO 
+2 KILL AUTILITY($JOB) 
+3 SET A($JOB,0)=0 FOR C=0:1:255 SET A(C)=C 
+4 SET X=-1 FOR DO QUIT:X=-1 
+5 USE IN SET Y=$JOB IF $DATA(AUTILITY(Y)) 
+6 IF X<O READ *x IF $$End0fFile() QUIT 
+7 FOR I=O:l QUIT: '$DATA(A(Y,X)) SET OFS=A(X),Y=X READ *x QUIT:I>31 IF $$EndOfFile SET X=-1 QUIT 
+8 IF X>-l,I<32,C<32766, '$DATA(A(X)) SET C=C+l,A(X)=C 
+9 USE OUT WRITE *OFS\256+($TEST*l28),*0FS256 
+10 IF WRITE *X SET X=-2 
+11 USE IO KILL AUTILITY($JOB) 
+12 QUIT 

Figure 1. The compression algorithm. 

;Input params: IN=input dev, OUT=output dev, must be OPEN 
DCMPR(IN,OUT) NEW C,IO,OFS,X,Y,Z 
+l SET I0=$IO 
+2 KILL AUTILITY($JOB) 
+3 SET A($JOB,O)=O FOR C=0:1;255 SET A(C)=$CHAR(C) 
+4 FOR DO QUIT:X<O 
+5 USE IN READ *x IF $$EndOfFile() SET X=-1 QUIT 
+6 READ *y IF X>l27 SET X=X-128 READ *z 
+7 USE OUT SET OFS=X*256+Y WRITE A(OFS) 
+8 IF WRITE *z SET C=C+l,A(C)=A(OFS)_$CHAR(Z) 
+9 USE IO KILL AUTILITY($JOB) 
+10 QUIT 

each character as it is. But you should 
have a look at the standard. There you 
read that the implementor may define 
the values returned by READ *1 vn in a 
device-dependent manner. This 
translates to "do not use this in porta­
ble programs." Fortunately, the 
above code works under all M imple­
mentations to which I have access. 
Testing for the end-of-file condition 
is also not possible in a standardized 
way. So please replace $$EndOf­
File ( ) with any code, testing for this 
condition in your M implementation. 
(But don't use globals in this test!) 

Let's have a look at the code: In the 
line CMPR ( DCMPR), all variables inter­
nal to the procedure are NEwed. In the 
line CMPR + 1 ( DCMPR + 1 ) ' the current 
device is saved (what about NEW$Io?). 

CMPR+2 clears a scratch global. 

CMPR+3 preloads the dictionary with 
characters 0 through 255. The die-

February 1994 

Figure 2. The decompression algorithm. 

tionary in compression and decom­
pression has the same contents, but 
we use a simpler structure in the de­
compression procedure. During com­
pression, strings are held on the index 
level, with the $ASCII ( ) value of each 
character treated as a separate index. 
The dictionary codes are held on the 
data level. During decompression, 
dictionary codes are held on the index 
level and the complete coded strings 
are held on the data level. 

CMPR+5 sets up the naked indicator. 

CMPR+6 reads a character, unless we 
have a surplus character from previ­
ous processing. 

CMPR +7 scans the dictionary built up 
so far. If the new character has a dic­
tionary entry, we read an additional 
character. Note that the first character 
we try in this loop always has a match 
in the dictionary due to preloading. 
Using naked reference with two sub-

scripts changes the value of the naked 
indicator, which is essential for this 
procedure to work. There is no need 
to store all the characters. The infor­
mation is implicit in the naked indi­
cator! 

To avoid getting global references 
that are too long, there is a limit of 
thirty-two in the loop. On older sys­
tems you have to adjust that to lower 
values (same change in following 
line!). The normal termination of the 
loop is when the longest entry in the 
dictionary matching the current entry 
has been found (code in OFS). 

CMPR+8 Normally each successful 
match of a string results in the defini­
tion of an additional entry into the dic­
tionary. The exceptions are when 
there are no more characters (Endo r­
F il e), or when the FOR is terminated 
by the length criterion, and, of 
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course, when we cannot make more 
entries into a full dictionary (2** 15 
entries = 32768). 

CMPR+9 The dictionary code is written 
as two bytes. The high bit of the high 
byte indicates whether a plain charac­
ter follows. 

CMPR+ll (DCMPR+9) Clean-up. 

The decompression is somewhat sim­
pler and faster. 

DCMPR+5, and +6 Two bytes of the 
dictionary code are read. If the high 
bit of the first byte is set, a third char­
acter is read. 

Figure 3 shows some examples of 
compression at work. In the first line, 
small.txt are the first 256 chars of this 
article. In the second line, naked.txt 
is a file with this article and the one 
which appeared in the November 1993 
issue of M Computing as ASCII files. 
UMSDA.DAT is a file with fixed­
length records, supplied by the Ger­
man postal service for conversion to 
the new ZIP codes. CMPR is this algo­
rithm, compress is the UNIX com­
press algorithm. File sizes are given in 
bytes. Compression ratio is shown in 
percentage (1-(CompressedSize/Un­
compressedSize) )* 100. 

file 
small.txt 
naked.txt 
UMSDA.DAT 

uncompressed 
256 

CMPR(M) 
341 (-33.20%) 
14,970 (20.72%) 18,883 

9,110,247 2, 177,467 (76.10%) 

Figure 3. Examples of compression at work. 

DCMPR+7 writes the coded string from 
the dictionary. 

DCMPR + s If there has been a third char­
acter in the previous line, write it and 
define a new dictionary entry. 

This algorithm is as portable as M 
software using 1/0 can be. It is easy 
to implement. If there are alternates 
in UNIX/DOS that can be used, just 
use them; they are probably faster. 

The algorithm does not compress 
small files. It may even make very 
small files larger. This is because the 
first characters (8-bit) are coded by 
dictionary entries (15 plus 1-bit). But 
when the directory has built up some­
what, compression works the way 
you would expect. 
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On small files the performance of 
CMPR is ugly: A negative compres­
sion ratio means that the file is in fact 
increased. The larger a file, the better 
the performance. On megabyte files it 
approaches the compression ratios of 
UNIX compress. 

The algorithm can be modified in two 
directions. First, use only N bits to 
code dictionary entries in the com­
pressed file, as long as there are fewer 
than 2**N entries in the dictionary. 
This lowers the compression thresh­
old and makes compression ratios bet­
ter. That involves some bit opera­
tions, which are unusual, albeit not 
impossible, under M. 

The second direction is experiment­
ing with strategies of how to proceed 
when the dictionary is full. If the na­
ture of the processed data changes at 
some point, it makes sense to throw 
away the dictionary if the change 
makes compression rates deteriorate. 
That can be done easily, but it is be­
yond the scope of this article. 

There are many more ways to do data 
compression under M. I hope that my 
demonstration of this one example en­
courages many of you to experiment 
with this topic. It is possible to beat 
UNIX compress with an M-based so­
lution! Meet the challenge! II 

compress (UNIX) 
222 (13.28%) 
9,880 (47.67%) 
1,577,894 (82.68%) 

Winfried Gerum is president of Winner 
Software GmbH in Erlangen, Germany. His 
column appears regularly in M Computing. 
A similar article has appeared in the MT A­
Europe newsletter. 
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