
TIPS 'N'
TRICKS

How to Sort ''MacMum.ps''
and Other Strange Guys

Winfried Gerum

Sorting and searching is a big
topic for programmers using
languages other than MUMPS.

For us M folks it is not an issue. M
does many things forus. In particular,
it automatically sorts data entries ac
cording to a very powerful scheme:
numeric values sort according to their
numeric value, and all other keys sort
according to the values of their
(ASCII) codes. In many cases that is
a perfect solution.

The Good Old Days
In the early days of working with
computers, one could forget about ac
cents and umlauts-not even lower
case characters were available. In
those days people were happy to see
a few words between long rows of
numbers. You would get the follow
ing set of names sorted as MACAR
IOS, MACMUMPS, OESTER
REICHER, VONNEUMANN,
ZAPATA and nobody would com
plain: M performed exactly as one
would expect.

September 1993

by Winfried Gerum

More Functionality
More Problems
Computers became more affordable
and people became more demanding:
lowercase characters were introduced
to the computing world. Using
MUMPS and ASCII collating, the
same guys sort as:

MacMumps, Macarios, Oester
reicher, Zapata, vonNeumann

The problem is that the ASCII codes
of all lowercase characters are higher
than $ASCII ("Z"). MacMumps col
lates before Macarios because a sorts
after M. Likewise, vonNeumann
comes after Zapata because a v sorts
after Z.

It Works as Designed
(It Is Not Designed
to Work)
When an end user reported this as an
"error," someone told him, "That
cannot be changed, that is the way
your computer works." Besides, it
was not a serious issue, as Mac
Mumps and vonNeumann are rare ex
ceptions. Most names follow the pat
tern 1 Ul .L, resulting in perfectly
reasonable sorting. The occasional
exceptions could be explained to the
few inquiring customers.

Standardization-The
N everending Story
But progress has a dynamic of its
own. Reality soon exceeded the

dream of standardization: to accom
modate various needs the basic ASCII
character set has been extended by
different people in many different
ways. There now are many different
and incompatible national, interna
tional, and proprietary character sets.
While it now may be possible to' use
umlaut characters, you may get, de
pending on the character set and the
M implementations, the following se
quences of our guys in the sample:

MacMumps, Macarios, Zapata, Ost
erreicher, vonNeumann
MacMumps, Macarios, Zapata, von
Neumann, Osterreicher
Osterreicher, MacMumps, Macarios,
Zapata, vonNeumann

The first line uses a German national
character set. Some of the (7~bit)

ASCII characters are replaced by um
lauted characters. A, 6, 0 come be
tween Zand a. The second and third
lines may actually result from use of
the (same) 8-bit character set, but
from two different M implementa
tions: some sort 8-bit characters after
$C(127), some before $C(O).

Accept the Challenge!
It looks confusing, and it is. We can
no longer force people to accept that
confusion. They won't accept it and
they don't have to. Computers do
(most of the time!) exactly as we tell
them. We just have to tell computers
a little bit more. With some additional
care one can get any desired collation
sequence very easily. Obtaining the

M COMPUTING 49

desired sorting requires a transform.
Unless that transform is reversible, the
full original reference also must be
stored somewhere. This is not as easy
as $TRANSLATE-ing one character into
-another character, which might be
sufficient to accommodate accents. In
the Spanish language, the combina
tion fl does not sort as two characters
but as one. The umlauts and the sharp
s of the German language sort as two
characters (in phone-book collating,
not in Duden collating).

The Solution
I have devised a generic algorithm that
helps to solve many kinds of sorting
problems. That algorithm is table
driven. You supply a table that simply
specifies "Character X sorts like U".
That table and my algorithm will
transform input strings to a unique
string with the desired collation prop
erty. There is also a backward trans
form to regain the original string from
the transformed one. The basic idea
is to replace all characters with their
correctly sorting cousins, yielding a
string that looks suspiciously like
those of the old halcyon days. To dis
tinguish between different strings that
yield the same primary sequence, a
second sequence of differentiating
characters is calculated and appended
to the primary sequence. These differ
entiating characters are needed to
make the transform reversible and
they distinguish between different
keys yielding the same primary se
quence. Thus the length of a key is
about doubled. This extension is the
price that must be paid for the conve
nience of having a reasonable sorting.

50 M COMPUTING

(Did you expect a free lunch?). Clever
application of the algorithm, however,
makes it possible to reduce the average
additional space requirements dramati
cally, at least for some cases.

A character not in the table represents
itself. As a differentiating number it is
assigned a zero. If a character is in the
table, the longest matching entry is
searched. The differentiating number
is determined by the position of the re
placed string (i.e., its first character)
within the table. The ordering of en
tries within the table is significant,
allowing fine tuning of the sorting pro
cess. The differentiating numbers are
assembled into a string. The starting
position (or offset) again is user-de
fined. It should have a very small code
value, in order to minimize its effect
on collating. If control characters are
permitted, the offset may be zero.
Otherwise an offset of 32 is recom
mended. If you want to "read" the
transformed keys, an off set of 48 is
convenient, as it maps the first ten
·numbers into their ASCII representa
tion. To reduce storage requirements,
it is possible to separate the primary
transform and the differentiating
string by a delimiter character. The
ASCII value of this character also
should be very small and it is essential
for the table to specify an entry that
maps this character onto another one.
The secondary string is then trimmed
of trailing zeroes (or the equivalent).
If all characters of a string are mapped
into themselves, the transform
changes nothing and no additional
space is required.

Our sample names are converted by
$$UIN''%GKT () to

MACARIOS !!!!!!!
MACMUMPS !! !!!!
OESTERREICHER "''! ! ! ! ! ! ! ! ! ! !
VONNEUMANN !!! !!!!!!
ZAPATA!!!!!

These keys sort as we would expect
them to. With $$UOUP%GKT() we
get the original strings back:

Macarios, MacMUMPS, Oster
reicher, vonNeumann, Zapata

Armed with this function, sorting and
searching, once again, is no longer a
big issue for M programmers. As we
have seen, user-defined collation is
available with existing M implemen
taitons. U oder the heading of Interna
tinalization, the MUMPS Develop
ment Committee has done
considerable work. One of the new
miracles is the feature of a structured
system variable (ssvn) describing col
lation properties:

"$C(charsetexpr,"COLLATE")=expr
y_ algoref

The idea is, that before M collation is
done, strings are internally trans
formed by a function described in this
ssvn. The generic key tranform de
scribed in this article produces exactly
the collation value that the charset
algoref function should produce.
Once the new standard is generally
available, it is possible to specify this
transform in one place with the bene
fit of getting more reasonable colla
tion without the burden of changing
existing applications.

The routine is shown in the following
figure.

Winfried Gerum is president of Winner
Software in Erlangen, Germany. His col
umn appears regularly in M Computing.

September 1993

%GKT ;generic key transform;
+l ;Gerum,20-March-1992
+2 Q
+3 ;function $$INA%GKT(X,T[,O[,DJJ)
+4 ;in:X string to be transformed
+5 ; T transformation table (string)
+6 ; 1st char usually":" delimiter within replacement pair
+7 ; 2nd char usually "," delimiter between replacement pairs
+8 ; following chars ar.e pairs like
+9 ; " :_,a:A,A:A,b:B,A:AE,sch:S" ..
+10 ; meaning "a" sorts as "A","b" as "B", "A" as "AE" etc.
+11 ; both parts of a replacement pair should be at least one
+12 ; character long. If you specify "-" sorts like no character,
+13 ; the reverse transform cannot recover the "-" character.
+14 ; If you specify "" sorts like some character, that is simply
+15 ; ignored. So the delimiting chars themselves cannot be
+16 ; transformed. The order within the table is significant: if
+17 ; several combinations of chars map into the same char the
+18 ; order within the table decides which one sorts first. Each
+19 ; character not in the table sorts before occurrences of the
+20 ; same character resulting from a transform.
+21 ; 0 offset for counts string, recommended value 0 if CTRLs are
+22; permitted as subscripts, otherwise 32 (=$ASCII(""))
+23 ; default value is 48 (=$ASCII("O"))

-+24 ; if called by name, value actually used is returned
+25 ; D delimiter between raw transform and counts string, should be
+26 ; zero or one character. Surplus chars are being discarded.
+27 ; If non-empty that character either should never be in an input
+28 ; string or it should appear in the translation table. Use of the
+29 ; delimiter saves space in case no characters of the input string
+30 ; are translated.
+31 if it is not empty, its $ASCII value should be small.
+32 ; default value is ""
+33 ; if called by name, value actually used is returned
+34 ;out: transformed key, with desired collation properties

IN (X,T,0,D)N B,C,F,I,P,Q,Y,Z
+l Q:$G(X)='"' "" ;missing or trivial string
+2 Q:$L($G(T))<5 X ;missing or trivial translation table
+3 S:$G(O)="" 0=48 ;offset defaults to $ASCII("O")
+4 S D=$E($G(D)) ;delimiter defaults to empty
+5 S P=$E(T),Q=$E(T,2)
+6 S Y="",Z=""
+7 F I=l:l:$L(X) D S Y=Y-C,Z=2-B
+8 .S C=$E(X,I) I T'[(Q_C) S B=$C(O) Q ;no transform
+9 .F I=I:l:$L(X) Q:T'[(Q_C_ $E(X,I+l)) Q:$E(X,I+l)=P S C=C- $E(X,I+l) ;get longest matching entry
+10 .I T'[(Q_c_p) S B=$C(O) Q
+11-.S F=$P($P(T,Q_C_P,2),Q)_;get replacement
+12 .S B=$L($P(T...Q,Q...C...P),E... $E(F)) ;get of entry
+13 .S C=F,B=$TR($J("",$L(C))," ",$C(O+B))
+14 I DJ"" F I=$L(Z):-l:O I $A(Z,I)'=O S Z=$E(Z,l,I) Q
+15 I DJ"",Z="" Q Y ;transform yields trivial result
+16 Q Y D Z
+17 ;function $$0UTA%GKT(X,T[,O[,DJJ)
+18 ;reverse function to IN, in and out same as above

OUT (X,T,0,D)N B,C,c,F,I,P,Q,Y,Z
+l Q:$G(X)="" "" ;missing or trivial string
+2 Q:$L($G(T))<5 X ;missing or trivial translation table
+3 S:$G(O)="" 0=48 ;offset defaults to $ASCII("0")
+4 S D=$E($G(D)) ;delimiter defaults to empty
+5 S P=$E(T),Q=$E(T,2)
+6 I DJ"" S Y=$P(X,D),Z=$P(X,D,2,$L(X,D)) Q:Z="" Y
+7 ES I=$L(X),Y=$E(X,l,I/2),Z=$E(X,I/2+1,I)
+8 S F=""
+9 F I=l:l:$L(Y) S C=$E(Y,I) D S F=F_C
+10 .S B=$E(Z,I) Q:B="" S B=$A(B)-0 Q: 'B ;no replacement
+11 .S C=$L($P(T,P_C,l,B),Q) ;Piece# of replacement pair
+12 .S C=$P(T,Q,C) ; replacement pair
+13 .S c=$P(C,P,2) ;replacing string
+14 .S C=$P(C,P) ;original string
+15 .I C='"'! (c="") S F="<inconsistent input>",I=$L(Y) Q
+16 .S I=I+$L(c)-l ;skip (length of replacement)
+17 Q F
+18 ;function $$0UT2A%GKT(X,TI,TO[,O[,DJJ)
+19 ;reverse function to $$IN, similar to $$OUT. The difference is that
+20 ;in this generalized form there are two occurrences of the translation
+21 ;table. One (TI) as it has been used to transform the original string,
+22 ;the other (TO) is an alternate translation table that would be used
+23 ;by $$IN to generate the same output as TI for a different character set.
+24 ;thus it is possible to have a common exchange format between different
+25 ;character set. The mechanism may be used to produce sequences for a
+26 ;printer to emulate characters by things like
+27 ;<CHARl><BACKSPACE><CHAR2>.

September 1993 61 COMPUTING 51

OUT2(X,TI,TO,O,D)N B,C,c,F,I,P,Q,Y,Z
+l Q:$G(X)="" "" ;missing or trivial string
+2 Q:$L($G(TI))<5 X Q:$L($G(T0))<5 X ;missing or trivial translation table
+3 S:$G(O)="" 0=48 ;offset defaults to $ASCII("O")
+4 S D=$E($G(D)) ;delimiter defaults to empty
+5 ;DEBUG; Q:$$TITO(TI,TO) "<incompatible rules>"
+6 S P=$E(TI),Q=$E(TI,2)
+7 ID]"" S Y=$P(X,D),Z=$P(X,D,2,$L(X,D)) Q:Z="" Y
+8 ES I=$L(X),Y=$E(X,l,I/2),Z=$E(X,I/2+1,I)
+9 S F=""
+10 F I=l:l:$L(Y) S C=$E(Y,I) D S F=F-C
+11 .S B=$A(Z,I)-O Q: 'B ;no replacement
+12 .S C=$L($P(TI,P_C,l,B),Q) ;Piece# of replacement pair
+13 .S c=$P($P(TI,Q,C),P,2) ;replacing string
+14 .S C=$P($P(TO,Q,C),P) ;original string
+15 .I C=""!(c="") S F="<inconsistent input>",I=$L(Y) Q
+16 .S I=I+$L(c)-l ;skip (length of replacement)
+17 Q F
+18 ;function to test whether parameters TI.TO for $$0UT2 are compatible
+19 ;returns TRUE, if not compatible

TITO(TI,TO) N I,P,Q S P=$E(TI),Q=$E(TI,2)
+l I $E(TI,l,2)'=$E(TO,l,2)
+2 E I $L(TI,P) '=$L(TO,P)
+3 E I $L(TI,Q) '=$L(TO,Q)
+4 E F I=2:1:$L(TI,Q) I $P($P(TI,Q,I),P,2)'=$P($P(TO,Q,I),P,2) Q
+5 Q $T
+6 ;sort all lowercase as uppercase

UIN(X) Q $$IN(.X,":,: !, ! : !,a:A,b:B,9:9,d:D,e:E,f:F,g:G,h:~,i:I,j:J,k:K,l:L,m:M,n:N,o:O,p:P,q:Q,r:R,
s:S,t:T,u:U,v:V,w:W,x:X,y:Y,z:Z,A:AE,a:AE,O:OE,6:0E,U:UE,E:SS",32," ")

+l ;inverse of $$UIN
UOUT(X) Q $$0UT(.X,'':, : !, !: !,a:A,b:B,c:C.d:D,e:E,f~F,g:G,h:H.i:I,j:J,k:K,l:L,m:M,n:N,o:O,p:P,q:Q,

r:R,s:S,t:T,u:U,v:V, :W,x:X,y:Y,z:Z,A:AE,a:AE,O:OE,6:AE,U:UE,E:SS",32," ")

Figure 1. The routine for sorting.

MT A MEMBERSHIP APPLICATION

D YES, I want to enhance my professional career. Sign me up as a member today!

PLEASE CHECK APPROPRIATE BOX
0 Individual-$75 0 Individual, Non-North American-$85

0 Organizational---(choose one) 0 Corporate-$550 0 Institutional [501(C)3]-$500

0 Employee of Organizational Member- $60 Organizational ID# _______ _

0 Student- $30 Full-time students only. Attach a copy of current student ID.

PAYMENT OPTIONS
0 Check enclosed 0 Bill Me-Purchase Order# __________ _

0 Visa 0 MasterCard - Account # Exp. date __ ~ ___ / __

Name on card _______________ ~ Signed _________________ _

For your convenience, you may fax or send this form to:

52 Al COMPUTING

M Technology Association
1738 Elton Road, Suite 205

Silver Spring, MD 20903-1725
Fax: 301-431-0017

MCI3

September 1993

