
TIPS 'N'
TRICKS

QUIT-The Ultiinate Cotntnand

Winfried Gerum

No RISC-no fun. That is not
murderous advice in the age of
the AIDS epidemic, but a slo

gan advertising faster data pro
cessing. Today, assembler program
mers are an endangered species. The
job has been taken over by compilers
(or interpreters!) of high-level lan
guages. These compilers are not as
clever as their human predecessors,
and therefore they rarely use the more
sophisticated instructions processors
used to offer. So the idea has been to
keep processors simple and stupid,
with resulting processors being easier
todebugandproduce. Asalotofspace
on a chip is saved, chips can be made
smaller or they can accommodate on
processor memory. Both options are
good for speed. (And a stupid com
piler never knows the difference!) The
user or programmer gets marvelous
speed at an affordable price.

What is good for hardware might be
good for software, too. Never cry
never. If airplanes were as reliable as
a typical piece of software, no one
would ever dare fly. If all software
were as expensive as COBOL pro
grams, there would be no basis for

24 M COMPUTING

"by Winfried Gerum

personal computing. Automating the
software production process is com
mon for us MUMPS folks. In former
times, MUMPS was something like
a reduced instruction set language.
But it becomes ever more compli
cated. Most proposals add something
to the language. Why not propose to
reduce the language?

Looking at the VA FileMan version
17. 7 package with 188 routines,
7 ,624 lines, and 424,872 characters,
I found 24,622 commands, which fall
thusly:
Commands

8,826
3,062
2,846
2,606
2,472
1,812
1,683

720
207
204
106
24
21
19
6
3
2
2
1

Percentages/Types
35.85 % SET
12.44 % IF
11.56 % WRITE
10.58 % GOTO
10.04 % KILL
7.36% DO
6.84%QUIT
2.92%FOR
0.84 % XECUTE
0.83 %READ
0.43 % ELSE
0.10%NEW
0.09% LOCK
0.08 % USE
0.02%CLOSE
0.01 %ZL
0.01 % HANG/HALT
0.01 % VIEW
0.00% OPEN

A few commands make up the bulk of
routines. Surprisingly, it is possible to
avoid the most frequently used com
mands altogether. But there is one
command that is indispensable now:
the QUIT command. Previously this
command seemed to be one of the
least exciting ones. It was most mem-

orable for being the source of the most
frequent typographical error, i.e.,
just one SPace after that command.
Another occasional booby trap has
been an implicit QUIT at the end of a
routine: when adding code at the end
of a routine, one easily forgets to
make the previously implicit QUIT ex
plicit. Since the 1990 ANSI MUMPS
standard, things have changed dra
matically. QUIT can still be used in the
argumentless form to terminate FOR
loops, subroutines called oo or XEC
UTEs. But in a form with one argument
it is used to terminate an extrinsic
$$function, returning the value pro
duced by that function.

Surprisingly, now the only command
you really need is QUIT. It is possible
to write functions that contain only
QUIT statements. The good old New
tonian square root algorithm

;;SQRT takes one argument
;;interpreted as a real
;;number. empty string and
;;negative values are
;;considered invalid input
;;and return an empty string.
;;end criterion of FOR loop
;;does not work on arbitrary
;;precision systems!

SQRT(X)Q:X<O ! (X="") "" Q: 'X 0
N A,B
S A=l+X/2
F S B=A,A=X/B+B/2 Q:A'<B
Q B

may be restated with the help of two
auxiliary functions as

SQRT(X)Q:X<O! (X="") "" Q:
'X 0 Q $$SQ2(X,$$SQl(X,X))

SQl(X,B)Q X/B+B/2
SQ2(X,A)Q:$$SQl(X,A)

'<A A Q $$SQ2(X,$$SQl(X,A))

Provided that your M implementation
supports the necessary stack depth

February 1993

I
I
i
t
t

i
f
~
I

needed for recursion, these two exam
ples are functionally equivalent.
There is no longer a SET command.
The assignment is done via the param
eter-passing mechanism. By the same

~ reasoning, the NEW is superfluous, as
parameter passing implies NEwing the
formal parameters. FOR is replaced by
recursion. DO is implicit in the use of
an extrinsic function. There is no need
to use IF since there are either post
conditionals or $SELECT. Using $SE
LECT and avoiding postconditionals,
we could rewrite SQRT as

SQRT(X)Q $S(X<O ! (X= 1111
):

1111 ,X:
$$SQ2(X,$$SQl(X,X)),l:O)

SQl(X,A)Q X/A+A/2
SQ2X, A}'Q$S($ $SQ1 (X, A) <A:

$$SQ2(X,$$SQl(X,A)),l:A)

Allowing for arbitrary long lines of
codes, one could rewrite a lot of soft
ware as a sequence of functions all
containing just one QUIT statement.

If we can do away with SET, IF,
ELSE' FOR' and DO' then what about
the other commands? There is almost
no need to mention GOTO. Some al
ready regard GOTO as a pariah. Since
the introduction of the block structur
ing syntax, there is rarely a sound mo
tivation to use GOTO. For the rest, let
us have a short look at other computer
languages: the now so popular C pro
gramming language does not have 1/0
statements. Likewise, Modula-2,
Pascal, and ALGOL do not have 1/0
in the language definition. These lan
guages make 1/0 available via library
functions and library procedures.

Global variables are one of the pillars
upon which Mis founded. They make
110 easy. I cannot think of working
with globals without SET and KILL.
Working with local variables, there
really is no need for these commands.
So it is conceivable to have a RISC
MUMPS with a dramatically reduced
instruction set. Imagine the benefits
of such a MUMPS: ultra fast, super
reliable, and dirt cheap.

It is unlikely that the M community
will follow that path. But have a sec
ond look at software written in that
style. The principles of "Higher Order
Software" (as stated in James Mar
tin's book Provably Correct Pro
grams from Provably Correct Con
structs) are child's play to follow
using this style. Dead code and dead
variables as most <UNDEF>S can be lo
cated by automated analysis.

You probably do not intend to rewrite
time-honored subroutines such as the
square-root function. When writing
new software, though, it is good prac
tice to make extensive use of (extrin
sic) functions: all information neces
sary and sufficient to produce a
certain result has to go through the pa
rameter list. There should be just one
result. This result is passed as the
value of a function by the QUIT com
mand. A function should not have any
side effects. This is currently not pos
sible to achieve in certain respects: the
naked indicator cannot be restored
easily (NEW $REFERENCE might help)

and the 1/0 situation cannot be re
stored easily. The most notorious side
effect is that on $HOROLOG. If you have
any remedies, please tell me.

Breaking a problem down into sub
problems may lead to mapping each
problem in a natural way into a func
tion, getting your code directly from
analysis. In some cases, when the
analysis is already available, you just
map the analysis into code.

If you think this idea is impracticable,
have a look atthe following two nontriv
ial examples. A function to transform
hexadecimal numbers into decimal for
mat appears as figure 1. Typically, such
an algorithm does not take negative
numbers or fractions into account. This
example also has a shortcoming, as
some valid hex strings cannot be con
verted to decimal numbers (try
$TR($J('"',255), 11 11

,
11 A11

)). A really
good function has to address this prob
lem. With the 1993 M standard we will
have error processing to handle these
exceptions easily. A function with ille
gal input should produce no value. The
functions presented here give an empty
string on illegal inputs. This is only be
cause standard error processing has not
yet been established. The main func
tion (i.e., the one to be called from out
side) always has to check for illegal in
put. The auxiliary functionesimals (see
planetesimal in Webster's New World
Dictionary) may do without such
checks for performance reasons (which
mean nothing for true purists!).

; HD takes one argument interpreted as a hexadecimal number (with optional sign and optional
; fractional part) to (canonic) decimals. invalid input is returned as an empty value.

HD(X)

HDl(X)

Q $TR(X, 11 abcdefABCDEF11 ,llllllllllll) '?.1 11
-

11 .N.111
•

11 .N 1111 Q: 11
-.

11 [X 1111

Q:$E(X)=11 - 11 11 - 11_$$HD($E(X,2,$L(X))
Q:$L(X,".")=2 16**-$L(X,".",2)*$$HD($P(X,".",2))+$$HD($P(X,"."))
Q $$HD1($TR(X,"0123456789abcdefABCDEF",

$C(O,l,2,3,4,5,6,7,8,9,10,ll,12,13,14,15,10,ll,12,13,14,15)))
Q:X="" 0 Q $$HD1($E(X,l,$L(X)-1))*16+$A(X,$L(X))

Figure 1. Hexadecimal conversion using only the QUIT command.

February 1993 M COMPUTING 25

OATE(H)

Ol(H)

G(H)

J(H)

ISO(Y,M,O)

GY(H)

JY(H)

GM(H)
GMO(H,Y)

JM(H)
JMO(H,Y)

GO(H)
GOO(H,Y)
GOl(O,Y)
G02(H,Y)

JO(H)
JOO(H,Y)
JOl(O,Y)
J02(H,Y)

JL(Y)

GL(Y)

XO(O,LP)
+l

+2

+3
XM(O,LP)

Example of use:

;;convert +$H-format date to ISO-format (honoring the Gregorian reform)
;;this is the main function, to be used from outside this context
Q:$0(H) [O $$0ATE(+$H) Q:H=1111 1111 Q $$0l(H+672411)
;convert modified +$H (counting from 1-JAN-O AC) to ISO-format
;578101 is 15-0CT-1582, when the Gregorian reform took effect
;Russians replace that by 700579 (14-FEB-1918)
;do not accept values before 1/01/01
Q $S(H<366: 1111 ,H<578101:$$J(H),1:$$G(H))
;convert modified +$H-format to Gregorian calender format (ISO)
Q $$ISO($$GY(H),$$GM(H),$$GO(H)
;convert modified +$H-format to Julian calender format (ISO)
Q $$ISO($$JY(H),$$JM(H),$$JO(H))
;assemble date parts to ISO format
Q y_11 / 11 _$E(O,M<lO)_M_11 / 11-$E(O,O<l0)_11 0 11

;return the year of H (modified +$H format) in Gregorian calendar
Q H-l\146097*400+(H-1#146097\36524*100)+(H-l#l46097#36524\l461*4)+(H-l#l46097#36524#146l\365)
;return the year of H (modified +$H format) in Julian calendar
Q:H>3285 H+l\l461*4+(H+l#l461\365) Q H-1\365 ;(year 4 and 8 are **no** leap years)
;return the month of H (modified +$H format) in Gregorian calendar
Q $$GMO(H,$$GY(H))
Q $$XM($$G02(H,Y),$$GL(Y))
;return the length of months before H (modified +$H format) in Julian calendar
Q $$JMO(H,$$JY(H))
Q $$XM($$J02(H,Y),$$JL(Y))
;return the length of months before H (modified +$H format) in Gregorian calendar
Q $$GOO(H,$$GY(H))
Q $$G01($$G02(H,Y),Y)
Q O-$$XO(O,$$GL(Y))
Q H-(Y*365+(Y-l\4)-(Y-l\lOO)+(Y-l\400))
;return the length of months before H (modified +$H format) in Julian calendar
Q $$JOO(H,$$JY(H))
Q $$J01($$J02(H,Y),Y)
Q O-$$XO(O,$$JL(Y))
Q H-(Y*365)-$S(H>3285:Y-l\4-2,l:O)
;return whether Y is a leap year (in Julian calendar)
Q:Y<l2 0 Q Y#4=0
;return whether Y is a leap year (in Gregorian calendar)
Q:Y#4 0 Q:Y#lOO 1 Q Y#400=0
;return combined length of previous months
Q:0<32 0
Q:LP $S(0<61:31,0<92:60,0<122:91,0<153:121,0<183:152,0<214:182,0<245:213,0<275:244,0<306:274,
0<336:305,1:335)
Q $S(0<60:31,0<91:59,0<121:90,0<152:120,0<182:151,0<213:181,0<244:212,0<274:243,0<305:273,
0<335:304,1:334)
;return combined length of previous months
Q:0<32 1
Q:LP $S(0<61:2,0<92:3,0<122:4,0<153:5,0<183:6,0<214:7,0<245:8,0<275:9,0<306:10,0<336:11,1:12)
Q $S(0<60:2,0<91:3,0<121:4,0<152:5,0<182:6,0<213:7,0<244:8,0<274:9,0<305:10,0<335:11,1:12)

Figure 2. $HOROLOG conversion using only QUIT command.

>Write $$H0(11-CAFE.cafe 11
)

-51966.792938232421875

MM/DD). Typical solutions do not
care for nonpositive values, or worse,
they work properly only for dates in
the twentieth century. The functional
approach presented here gives an easy
extension to all $H values. Negative

values are accepted, as long as no day
before 1101101 is designated by that
number. Dates before 1101101 are
avoided, as some reckon with a year
zero (astronomers) and others don't
(historians). Naturally the switch

Figure 2 is a function to convert $H
formats to ISO date format (YYYY I

26 M COMPUTING February 1993

from Julian to Gregorian on 15-0ct-
1582 is properly taken care of. If in
your part of the world the switch from
Julian to Gregorian has taken place at
a different time, just replace the num
ber 578101 (15-0ct-1582) in line Dl
with the proper value. The best
known exception is Russia. She
switched as late as 14-Feb-1918 (use
700579) from old style to new style.

~xamples of use:

>Write $$DATE(-672045), !,

$$DATE(-94311), !,

$$DATE(-94310), !,
$$DATE(55555)
1/01/01
1582/10/04
1582/10115
1993/02/07

Don't wait for $MIRACLE if your M
has $$extrinsics and QUIT. It is almost
all you ever need for programming.
The other thing is coffee. QUIT. •:•

Winfried Gerum is president of Winner
Software, a company dediQated to serving
the M community with tools, consulting,
and related services. His approach to M
code has been a stimulant for the interna
tional M community.

In the November 1992 issue of
MUMPS Computing, an inadvertant
error occurred in the Tips 'n' Tricks
column, despite every attempt to pre
vent mistakes. The editors sincerely
regret the mishap. Here is the colum
nist's correction for page 26, column
2 "Guess What the Current Century
Is."

The "Current Century" (in Gregorian
calendar) is always given by

$H+6724ll\36524.25

New BBS
The One and Only

301-942-5359

•

Some of the few programmers ac
knowledging the nonconstancy of
"Current Century" usually write the
equivalent of

$H>58073+19

This is better than just writing 19, but
not safe forever. Be careful: the for
mula for "Current Century" cannot be
modified to calculate the "current
year":

$H+6724ll\365.2425

This gives an approximation to the
"current year." It may fail in the first
or last day of some years; the next two
dates of failure are l-JAN-1996 ($H
of 56613 => 1995) and 31-DEC-
2036 ($Hof 71588 => 2037). The
fact that it never fails at the turn of the
century makes the above century for
mula valid. •:•

• •

Set modem and
communication software to:

February 1993

No parity bit,
8 data bits,
1 stop bit

New BBS • • •

M COMPUTING 27

