
TIPS 'N'
TRICKS

Look Out for Guaranteed Properties

. Winfried Gerum

We all strive for reliable soft­
ware, or at least we should.
But we need reliable primi­

tives and reliable methods. It is up to
the MUMPS Development Commit­
tee (MDC) and to the implementors to
provide the basic primitives MUMPS
programmers use and we expect these
primitives to be portable and reliable.
But do they really act as they are sup­
posed to do? As for the MDC, its
primitives often do, but sometimes
not.

Unusual but
Very Clever: The
Modulo Operator
For example, the Committee did a
fine job defining the "#" operator. In
MUMPS that operator is consistent
with the mathematical concept of resi­
due classes with the implication that
the behavior with negative values is
reasonable. In other languages a mod­
ulo operator-if available-usually
gives different results (for negative
operands) which are easier (faster) to
calculate, but more difficult to use. If
you have a date iri $HOROLOG for-

November 1992

by Winfried Gerum

mat, then date#7 indicates the day of
the week even if date is less than 1.
With time arithmetic, the modulo op­
erator gives the proper time of the day
even for negative time values. That
guaranteed property of the modulo
operator is very useful. But be careful
if you port from other languages to
MUMPS and vice versa. In other lan­
guages the modulo operator (or func­
tion) is defined in a different way,
such that a\b*b+(a#b)=a is always
true for all values of a and b (b not
equal to 0). In MUMPS that proposi­
tion holds just for positive values of a
and b. (See endnote.)

Arithmetic-Can We
Do It on Computers?
Numbers generally are a problem in
MUMPS, since there is not much
really guaranteed. You don't believe
that? Try to get the value of
$LENGTH(l/3*3). That expression
is all standard MUMPS, but the result
is somewhat random. Is that irrele­
vant to everyday problems? It is not!
Look at the places where the stan­
dard specifies 'intexpr'. Integer ex­
pression discards everything after
the decimal point. Therefore it
makes a difference whether you
have $WSTIFY(X,3.000000000001)
or $WSTIFY(X,2.999999999978).
The former acts as $J(X,3), while the
latter is the same as $J(X,2). In a
similar way, it makes a difference
whether you have IF 0 or IF
. 000000000031. The latter condition
looks very much like zero but here it
acts as one. So, small effects may
result in big differences.

Certainly nobody will write down
such crazy numbers. But they may
be the result of some arithmetic. In
standard MUMPS arithmetic has few
guaranteed properties. The standard
is not exactly specific about arithme­
tic. Nor do all implementors do a
good job: try simple code such as

S X=l F I=O:l W !,XS X=X*2

to get all powers of two your MUMPS
can handle. Some implementations
yield proper values until they termi­
nate with some error message. But
other implementations yield values
ending with zeroes despite that a
power of two never ends with a zero!

One day I tried that code on a very
popular implementation. The result
was an endless loop with occasional
negative numbers. Even some pub~
lished versions of the square root al­
gorithm such as

SQRT(X) Q:X<O 1111 Q: 'X 0
N A,B
S A=l+X/2
F S B=A,A=X/B+B/2 Q:A'<B
QB

are not without problems: careful
analysis will show that with "exact
arithmetic" the terminating condition
will never become true for most val­
ues of X. If that algorithm works
properly on many MUMPS imple­
mentations, it is not because of a good
job implementing arithmetic. It is that
there are many compensating errors
that make this terminating condition
work as desired. It should be no sur­
prise if you someday get an imple­
mentation that loops endlessly calcu­
lating $$SQRT(2) with the above
algorithm.

MUMPS COMPUTING 25

1:

1
i:',i i' ,,
I
I
'

11

11

Ii
I'
t\

1!

If you want to write portable and reli­
able software, be very careful about
what is actually guaranteed.

Bad Guys
Are Everywhere
Not only implementors but ordinary
MUMPS programmers often are care­
less about what is guaranteed and
what is not. Some glitches:

SET X=$E(X,2,255)

or

SET X=$E(X,2,999)

or

SET X~$E(X,2,2048)

may delete the first character of any
string X on many systems, but not all.
Standard MUMPS guarantees a mini­
mum of 255 characters for the maxi­
mum string length. But in fact it does
not specify a maximum for the maxi­
mal string length. So the only proper
code is

SET X=$E(X,2,$L(X))

(if SET $E (x) = 11
" is not available).

Another frequent error is the replace­
ment of code such as

IF X="a" ! (X="b") ! (X="c")

by

IF "abc"[X

or·

IF $FIND("abc",X)

the latter codes are shorter, but equiv­
alent only if it is guaranteed that
$LENGTH(X)= 1. Otherwise the lat­
ter conditions may be true if X="" or
X="ab" or X="bc".

$HORRORLOG
Occasionally, people use $HORO­
LOG values as a single index (global
subscript) with the idea that this will
result in a chronological ordering. At
first glance, it will do so: from 18-

26. MUMPS COMPUTING

May-1868 through 15-0ctober-
2114 the first $PIECE of $HORO­
LOG is 5 digits and from 2:46:40 AM
through midnight the second $PIECE
is 5 digits, too. As long as one stays
within these limits one gets chrono­
logical ordering indeed. But the re­
sulting software is not reliable: as
soon as somebody works past mid­
night, the ordering is messed up.
When using $HOROLOG values,
split them up into two numeric indices
that will always do the job.

Guess What the
Current Century Is
Frequently, people write "19" for the
current century because as long as
they can remember, the current cen­
tury has been 19. But it has not been
that way forever and will not long re­
main thus. When using $HOROLOG
values in sorting, either use

. SET KEY=$H,KEY=$P(KEY,","2)
*.OOOOl+KEY

or split them up into two numeric in­
dices

SET KEY2=$H,KEYl=+KEY2,KEY2=$P
(KEY2, II' II ,2)

to get the job properly done.

Be Clever but Not
Too Clever
A comparison of numeric values

IF A'=B

may be written a bit shorter as

IF A-B

and

IF $IO'=DEV

can be replaced by the same reasoning
with

IF $IO -DEV

which works on some systems where
$10 yields an integer. But the stan-

dard does not require $10 values to be
integers. That piece of code is not por­
table.

$DATA
Often code is written as

IF '$DATA(VAR) SET VAR="DEFAU
LT-VALUE" .
IF VAR>LIMIT . . .

The idea is that if VAR is not defined,
assigning a value avoids termination
of the routine with an <UNDEF> error.
In fact, this error is not avoided with
this code unless it is guaranteed that
$DAT A (v AR) cannot yield a value of
10. Instead, if we write

IF$DATA(VAR) [O . . .

we will never have a problem. If you
write extrinsic functions, remember:
when you write a function you never
know whether parameters are passed
by value or by name. Therefore, in
code written as

FUN(A,B) IF '$DATA(B) SET B=
"default" . . .

you expect that B might be undefined
because someone called the function
with $$FUN (x) . But the situation

KILLY WRITE $$FUN(.X, .Y)

produces an undefined B also and
there is no way to tell from within the.
function how it has been called.
Moreover,

KILLY SET Y(l)="" WRITE $$FUN
(.X, .Y)

produces a B with $DATA(B)=lO to
cause trouble.

How to Stop Worrying
and Start Programming
Never take superficial properties for
guaranteed properties. If you write
software, look at what the MUMPS
standard says and read your docu­
mentation to know what is true on
your MUMPS system. Try to make

November 1992

I
I s
J
.;1

your own software reliable by being
specific about what you want to guar­
antee.

Endnote
The definition of modulo varies
widely between languages:

X#Y = X-([X/Y]*Y) IFY'=O
divide by zero error IF Y =O
where [a]= the largest integer '>a
Ada
BASIC
Common Lisp
FORTRAN 90 (MODULO)
MUMPS

X#Y = X-([X/Y]*Y) IF Y>O
divide by zero error IF Y =O
undefined error IF Y <O
where [a]= the largest integer '>a
Modula-2
Pascal

Moving?

Let us know! Contact us at:

X#Y = X-([X/Y*Y)
0

IFY'=O
IFY=O

where [a]= the largest integer '>a
PL/l

Winfried Gerum is president of Winner
Software, a company dedicated to serving
the MUMPS community with tools, con­
sulting, and related services. His first com­
pany developed medical software with
MUMPS. At the end of 1991, he founded
his current company. He has been active in
the MUMPS community for many years,
contributing articles to journals and propos­
als to the MDCC-Europe.

X#Y = X-([XIY*Y)
x

IFY'=O
IFY=O

where [a]= the largest integer '>a
APL

X#Y = X-([X/Y*Y) IFY'=O
divide by zero error IF Y =O
where [a] = the integer part of a,

rounded towards 0
FORTRAN77
FORTRAN 90 (MOD)
Lisp

X # Y = machine-dependent
c

X#Y =implementation-specific
Pro log

-Editor

ESI offers a software training alternative. Computer Based
instruction is much less expensive than course fees, and
eliminates travel time and expenses. Perfect for individuals or
groups ... the more they're used, the more you save.

SAVE ···n TIME AND I

TRAINING SS .
CBl's available on floppy disk and magtape:

• Introduction to MUMPS
• Intermediate MUMPS Programming
• Advanced MUMPS Programming
• Introduction to File Manager
• Intermediate File Manager
• Advanced File Manager
• WORD MANAGER Tutor

MUMPS Users' Group/M Technology Association
1738 Elton Road, Suite 205

• VAX DSM System Management
• VAXNMS Concepts

Silver Spring, MD 20903 • DataTree System Management
• DCL Programming
• MSM-PC System Management

Phone: (301) 431-4070
Fax: (301) 431-0017

Please include your MUG ID number or mailing label
from MUMPS Computing along with your new address.

•

On site and lecture/workshop courses also
available.
EDUCATIONAL SYSTEMS, INC.
211 Vaughn Hill Rd., Bolton, MA 01740
Tel. 508-779-2914 FAX 508-779-6092

November 1992 MUMPS COMPUTING 27

