
TIPS 'N'
TRICKS

Do You Know
All About $DATA?

Winfried Gerum

Novices quickly learn how use­
ful MUMPS is, but experts,
too, find surprising new uses

of MUMPS syntax. I recently went
into code reading

Q:$S($D(X) :1,1:0)
I '$D(X)#l0
I $D(X) \10
I $D(X) \2=0

and wondered what other people may
or may not do with $DAT A. To be­
gin, let's refer to what the standard
says about $DATA: 2.2.73 $DATA
states $D[ATA] (glvn). This form re­
turns a nonnegative integer, which is
a characterization of the glvn. The
value of the integer is p+d, where:

d = 1 if the glvn has a defined
value, i.e., the NAME-TA­
BLE entry for the name of
the glvn exists, and the sub­
script tuple of the glvn has

18 MUMPS COMPUTING

by Winfried Gerum

a corresponding entry in the
associated DAT A-CELL;
otherwise d = 0.

p = 10 if the variable has descen­
dants; i.e., there exists at
least one tuple in the glvn's
DATA-CELL that satisfies
the following conditions:
a. The degree of the tuple is

greater than the degree of
the glvn, and

b. The first N arguments of
the tuple are equal to the
corresponding subscripts
of the glvn where N is the
number of subscripts in
the glvn.

If no NAME-TABLE entry
for the glvn exists, or no
such tuple exists in the asso­
ciated DATA-CELL, then
p=O.

The $DATA function is useful in two
situations. First, there may be uncer­
tainty as to whether some data are
available. A subroutine or a previous
routine may have altered the local
variables. Other jobs may have
changed the value independently.
Second, an UNDEFINED state of a
variable is an acceptable state of a
MUMPS variable. By convention,
therefore, the lack of definition itself
may carry information: a flag may be
implemented by a variable being ei-

ther undefined or having some arbi­
trary (defined) value. If one has a
variable that assumes one of its possi­
ble variables frequently, then there is
a lot of space to be saved, if that value
is by convention implied by an UN­
DEFINED state. In the first situation,
global variables are proper, but usu­
ally indicate bad style with local vari­
ables.

$DAT A actually gives two bits of in­
formation, i.e., four different states
denoted 0, 1, 10, 11. There are 2**4
= 16 distinct subsets of its values. In
many situations, only one of these
two bits are of interest. As long as
there actually is a variable, either sub­
scripted or unsubscripted, it is a sim­
ple matter. If one uses vintage code,
it is better to take no risks and ~heck
for specifics. Three MUMPS ven­
dors' programs that were part of their
implementations contained no sub­
sets coded thusly:

IF $D(X)=l! ($D(X)=ll)

Since MUMPS programmers like to
be concise, I found the following so­
lutions for the routines I analyzed,
with the last one being the shortest so­
lution:

$D(X)#l0
$D(X)#l0=1
$D(X)#2

A full analysis shows the following
usage

September 1992

Number of routines
Number of $DATA calls
Of these $0(1' ...)

0 I 10
Subset#

0 0 0 0
I I 0 0
2 0 I 0
3 I I 0
4 0 0 I
5 I 0 I
6 0 I I
7 I I I
8 0 0 0
9 I 0 0

10 0 I 0
11 I I 0
12 0 0 I
13 I 0 I
14 0 I I
15

All three vendors supply about the
same number of routines. Two of
them, however, supply part of the
routines in compiled form only. There
are surprising differences remaining
when the numbers are corrected for
the different numbers of routines in
each set. Vendor Two uses far less
$DAT As than its competitors and its
routines frequently use functions and
procedures. Another explanation for
differences in the frequency of
$DATA calls might be the newly in­
troduced $GET() function. Perhaps
$GET() replaces a frequently used
construction with $DATA(). I
checked for that effect:

number of $GET calls
number $S($D(..): ..)

Vendor 1 Vendor 2 Vendor 3

81 199 876
29 7 25

September 1992

11

0
0
0
0
0
0
0
0

I
I
I
I
I

Vendor I Vendor 2 Vendor 3

269 91 220
918 193 208
294 61 208

319 67 146
2 I

18 I 3

II 4 3

2

47 - 57
4

8 - 5
I

(512) (121) 1+(310)

There does seem to be a tradeoff be­
tween $DATA() and $GET() with
vendors One and Two. Analysis of
Vendor Three revealed that some peo­
ple use $G() more often than they
would use $$($D():(),1 1111

). All of
these packages have roughly one­
third of the $DAT As on globals, and
the hypothesis that "good" code uses
fewer $DATAs on locals has no sup­
port in the analyzed material.

The most frequent use of $DATA is
without an explicit reference to its
four possible values, which looks like
subset 15. But $DATA is in almost all
cases part of a boolean expression
(tvexpr). Because the implied bool­
ean interpretation selects implicitly
subset 14, all uses of $DAT A not ex­
plicitly referring to another subset
counted in subset 14. There was only
one explicit reference to this subset in
all of the routines scrutinized
($D(X)>O). Not surprisingly, the
complement subset 1 is the second-

most frequent one. Despite the simple
coding '$D(X), one can find alterna­
tives such as:

$D(X) '>0
$D(X)<l
'$D(X)#l0
'$D(X)#2

for subset 1.

Of practical importance are subsets 5
and 10; subset 10 is the complement
(negation) of subset 3. Both essen­
tially test for the same situation: If
$D(X) happens to be 10, then code
such as

IF $D(X) W X

or
WRITE $S($D(X) :X, 1: "")

will result in an error and it is better to
write:

IF $D(X)#2 WRITE X

or
WRITE $S($D(X)#2:X,l:"")

In more than ten years' MUMPS
experience, I have seen only one ap­
plication crash with <UNDEF> of
variable AGLOBAL(V AR) in this sit­
uation:

WRITE $S($D(AGLOBAL
(VAR)) #2 : A (VAR) , 1 : " ")

Another job actually killed the global
between $DATA and the subsequent
reference. It is good to avoid the situa­
tion altogether with the $GET
function.

Since programmers are very familiar
with subset 10, they begin thinking
there when they need a solution to
compute subset 5. In some cases,
there was

IF '($D(X)#2) READ ! , "X NEED A
VALUE",X

the frontrunner is

IF $D(X)#2=0 ...

A shorter solution not found in the
routines I analyzed was

IF $D(X) [0

MUMPS COMPUTING 19

This may be because programmers
think of $DAT A as having a numeric
value and the "contains operator" is
regarded as a string operator. There­
fore, they rarely, if ever, write this
combination. In the same way, it is
unlikely that IF 10[$D(X) will be
present instead of IF $D(X)< 11.

MUMPS has no data types; anything
is string and is interpreted as numeric
or boolean as needed. Any operator
accepts nearly any data (except per­
haps the numeric interpretation of a
legal string may be an illegal number,
as in x_ 11 IE900011 and X +
11 1E900011

).

The following table shows the short­
est way to test for each subset. No­
where is there a shorter solution.
Some have alternatives of equal
length and thus the most natural solu­
tion has been selected here.

Subset functions of $DATA

Only two subsets, 6 and 9, again com­
plements, cannot be computed with a
single operation. This does not pres­
ent a problem, because these subsets
are not relevant in everyday prob­
lems. If a value is interpreted as a
boolean value (truth value), however,
there is no need to look for zero/one
results. Then we just care for zero/
non-zero. In the case of subset 14, the
boolean process does the job by itself.
In subsets 11 and 13, the negated
comparison may be replaced by a sub­
traction. Subset 6 can be achieved in
a single operation that does not resem­
ble the "correct" solution.

There is also an elegant solution to
map the $DAT A values into four con­
secutive integers. $D(X)#4 maps
(0,1,10,11) into (0,1,2,3), such that

W $P(11 zeroAoneAtenAeleven 11
,

11 A11
,

$D(X)#4+1)

verbalizes the value of $DATA(X).

0 IO II MUMPS Code
subset#
0 0 0 0 0 0 FALSE (no value accepted)
I I 0 0 0 '$D(X)
2 0 0 0 $D(X)=l
3 I I 0 0 $D(X)<2
4 0 0 0 $D(X)=l0
5 I 0 0 $D(X) [O
6 0 0 $D(X)#3=1 or, as tvexpr: $D(X) #11
7 I 0 $D(X)<ll
8 0 0 0 $D(X)=ll
9 0 0 $D(X)-l[l

IO 0 0 $D(X)#2
II I I 0 $D(X) '=10 or, as tvexpr: $D(X)-10
12 0 0 $D(X)>l
13 I 0 $D(X) '=l or, as tvexpr: $D(X)-l
14 0 $D(X)>O or, as tvexpr: $D(X)
15 1 TRUE (all values accepted)

20 MUMPS COMPUTING

$DAT A and $GET are useful but they
should not be used to "cure" bad code.
Code should not produce unexpected
UNDEFINED values (nor unex­
pected DEFINED values either). Ex­
tensive use of modem syntax with ex­
trinsic functions, procedures a:nd
NEW is of great help. •!•

This column is based on a column that
was fir~t published in the MUG­
Europe Newsletter, vol. IX, no. 1
(1992).

Winfried Gerum is president of Winner
Software, which he started in 1991. The
company is in Erlangen, Germany, and is
dedicated to providing the M community
with tools, consulting, and related services.
Gerum has been active in MUMPS for many
years, writing articles, contributing propos­
als to MDCC-Europe, and helping organiz­
ing last year's MUG-Europe conference in
Nuremberg.

