
TIPS 'N'
TRICKS

Marvels of the FOR Cotntnand

by Winfried Gerum

W
hile some persons
DO call languages
like ALGOL,
PASCAL or

MODULA structured lan
guages, they REPEAT that
UNTIL people regard other pro
gramming languages as un
structured ones. Structured
programming is possible under
any programming language,
even ASSEMBLER. The other
way around for a careless pro-

Winfried Gerum

grammer even in MODULA-which lacks the infamous
GOTO-is to produce something like spaghetti code. It is
a matter of education and personal discipline to produce
structured code.

So FOR all MUMPS programmers I want to elucidate the
aspects of the FOR command which is the most important
control structure in this fascinating programming
language. As so often in MUMPS there is simplicity: We
have only one control structure for repeating code. And
there is complex functionality: This single command can
perform more tasks than the combined control structures
in any other programming language. Let us compare FOR
with the repetitive statements in PASCAL and C.

There are three such constructs. (P: stands for PASCAL,
C: for the C programming language, M: for MUMPS;
Code, expr ... stands for any code valid in the context)

while statement
P: while condition do Code
C: lfhi.1& (condition) Code
M: FOR Code QUIT:'condition Code

repeat statement
P: r§p&at Code lUlt.il. condition
C: do Code while !condition
M: rQB Code QUIT:condition

for statement
P: for variable:= exprl to expr2 Code

34 MUMPS COMPUTING

exprl and expr2 must be of type integer. There is no way
to give a stepwidth other than + 1 or -1 (!Q = + 1, downto =
-1). The control variable cannot be altered within the loop.

C: for (var=exprl; var < =expr2;var++) Code

is equivalent to the above PASCAL code. However, C is
more flexible: The triple of statements in the for-argument
has no restrictions at all. From the view of the language
syntax, there is no loop variable. Any of the three
statements in the for-argument list may be empty. The first
argument is executed once before entering the loop. The
second argument is executed each time entering the loop.
As long as the expression evaluates TRUE, the loop is
repeated. The third statement is executed after each
execution of a loop.

M: FOR var=exprl:l:expr2 Code

While the syntax of FOR is more powerful in C than in
PASCAL

C: for (exprl; expr2; expr3) Code

there is always a MUMPS equivalent to the C-for:

M: XECUTE exprl FOR QUIT:'expr2 XECUTE
Code:expr3

MUMPS is More
M: FOR Code Q:'condition Code2

has no elegant equivalent in PASCAL

P: Codel while condition do Code2 Codel

which repeats Code 1 in the routine text. It is possible to
avoid the repetition of Code 1 using a GOTO. But PASCAL
programmers are not supposed to use GOTO!

C: for (;;) {Codel; if (!condition) break;
Code2 }

that is essentially the same as in MUMPS, but the empty
for argument looks somewhat strange.

April 1992

While the following MUMPS constructs have some kind
of equivalent in PASCAL and C,

M: FOR var=numaxprl:numexpr2:numaxpr3 Coda

with numexpr2 not equal + 1 or -1

M: FOR var=numexprl:numexpr2 Code

the next constructs are unique to MUMPS:

M: FOR var=numexprl:numexpr2:numexpr3,nume
xpr4:numexpr5:numexpr6 Code

M: FOR var=exprl,expr2,expr3 Code

Especially if you consider that the last variant does not
restrict the values of var even to numerics, any string value
is possible.

Try to write an equivalent to

FOR Person="Frans","Joop","Marcus" 11RITE
,"Good morning ",Person

in any other language and you know why we love MUMPS!

Back to MUMPS
Let us have a systematic look at all the possibilities!

All variants have in common that the range of the command
is the rest of the line that contains the FOR command. In
fonner times, that has been a restriction limiting the value
of the FOR command. But the introduction of the block
syntax with the argumentless DO essentially did away with
that restriction. All variants may have a terminating
command: a QUIT or GOTO or HALT. Note that with
multiple FOR commands in one line, a QUIT command
QUITs just one level, while GOTO (and HALT of course)
tenninates all FOR commands nested in one line.

The argumentless fonn

FOR Code

and the open ended fonn

FOR var=numexprl:numexpr2 Code

repeat forever unless a tenninating command gives a way
out.

April 1992

Note that the fonn

FOR var=numexprl:numexpr2:numexpr3 Code

and

FOR var=numexprl:numexpr2 Code

take the numeric interpretation of begin, stepwidth and
limit-value, while

FOR var--expr

does not make any special interpretation of expr. The
values of their expressions are evaluated once before the
loop is entered and before the loop variable is assigned a
value.

So code like

+1 ;compute factorial N
+2 SET X=l FOR N=l:l:N SET X=X*N
+3 Q

may look strange to some people. But it is absolutely
reasonable code: Provided N is a positive integer, this
variable leaves the loop with the same value it had at its
entry!

On the other hand, code like

+1 FOR I=l:l:BUDGET DO SPEND IF ELECTION(l
) SET:ELECTIONS(I) BUDGET=BUDGET*2

~Q

probably does not perfonn as intended: FOR does not
exceed the original Budget!

The FOR variable may be freely changed by the code
invoked by the FOR command (do it only if reasonable and
well-documented or obvious). FOR must even detect a
KILL on the FOR variable and trigger an error. So the
introduction of an error trapping mechanism in MUMPS-
which is long overdue-would give a quick and dirty way
to terminate a FOR command even from within a
subroutine or a block-DO by killing the FOR variable.

Saving Some Characters
Programmers who abhor unnecessary codes will be happy
to learn that code like

+1 SET FROM=2*N,TO=X*N
+2 FOR I=FROM:l:TO Code
+3 Q

MUMPS COMPUTING 35

may be written even more concisely than

+l FOR I=(2*N):l: (X*N) Code
+2 Q

since the brackets are simply superfluous in MUMPS. Try

+l FOR I=2*N:l:X*N Code
+2 Q

It is completely intelligible for your interpreter (and for all
colleagues reading "Tips 'n' Tricks").

A Big Example
The various nonargumentless fonns of FOR may be
combined into complex statements such as

+l SET LIMIT=SO
+2 FOR P="List of all primes below",LIMIT,

2,3:P:l8,P:2 W !,P Q:P>LIMIT IF P,$$PR
IME (P) W " Prime"

+3 Q

This is almost an all-in-one example of the power of FOR.
The first FOR argument gives the caption of a list of
numbers. The second argument is the only even prime
(some say "2 is the oddest prime"). Subsequent tests for
primality need not check even numbers.

The third argument evaluates when it is entered to 3:2:18.
The fourth argument evaluates to 17:2 when due. This is
because the upper limit of the previous argument is not
reached exactly, and an increase beyond the limit is not
done. The number 17 appears twice in the list. Complex
FOR statements like these are not treated as nested FOR
statements concerning a tenninating QUIT statement.

Caveat Programmator
We see that a FOR argument list is not quite the same as
the argument list of other commands. Therefore it is no
surprise that

FOR @X Code
is not allowed, while

FOR @X=@Y Code

with @X evaluating to a local_variable_name and with
@Y evaluating to a for_argument_list

and

FOR I=@X:@Y:@Z Code

36 MUMPS COMPUTING

with X,Y,Z evaluating to variable_names should be
processed properly by all MUMPS implementations. A
novice programmer might want to cleverly condense

FOR I=l:l:lO FOR J=l:l:lO SET A(I,J)=""

to

FOR I=l:l:lO,J=l:l:lO SET A(I,J)=""

which is valid syntax, but very different in semantics: J is
not a loop variable in the latter example. J=l is treated as
a (boolean) expression, yielding either 0, 1 or <UNDEF>.

Counting With FOR
As most benchmarks-whether clever or not-rely
heavily on the FOR command, it is reasonable to expect
some kind of special tuning. Therefore, code like the
following, counting the subscripts of an array

+l SET CNT=O,X=""
+2 FOR SET X=$0(ARRAY(X)) QUIT:X="" SET

CNT=CNT+l

can be expected to run considerably slower than

+l SET X=""
+2 FOR SET CNT=O:l SET X=$0R.DER(ARRAY(X))

QUIT:X=""

The Story Goes On
If you think that is all about FOR, look at the MUMPS
standard of the year 2001. There you might find

FOR intexpr Code

which repeats Code intexpr times without concern about a
loop variable. .:•

This column is reprinted from MUG-Europe Newsletter,
Vol. VIII, No. 213, 1991.

Winfried Gerum is president of Winner Software which he
founded in 1991. The company-located in Erlangen, Ger
many-is dedicated to providing the MUMPS community with
tools, consulting, and related services. Gerum has been active in
the MUMPS community for many years, writing articles,contrib
uting proposals to the MDCC-Europe, and helping to organize
the 1991 MUG-Europe conference in Numemberg-his birth
place.

April 1992

