
FEATURE ARTICLE

A Glimpse into the Object-M Future
by Fred Boles

Abstract:
unto The software development world around us has beg

evolve into a world of interacting objects. If we wish
able to participate in this new world, we must beg
take the new paradigm seriously. This article will ex
one possible view of the role of M in the world of i
acting objects.

to be
in to
plore
nter-

Introduction
logy
o the

All signs indicate that the future holds Object Techno
for the M programmer. From the M standards body, t
lone major M implementer to M tool vendors, w
developers are overwhelmed by the presence of 0
Technology. Given the constant reminders that Ob
are the technology of choice for the future of M, it is
to take a serious look at how we can expect this to a

eM
bject
~ects
time
ffect

each of us.

The Object Landscape
EGA
oM.
with
ajor

ache
the

pro-

world. With the many new features EsiObjects brings to
at the Object-M developer, there are a few stand-outs th

will be discussed here.

EsiObjects Language Enhancements
The first thing to consider is that EsiObjects is a new pr 0-

+,
n
ng
ge
ge
re

gramming language. As in the extension from C to C+
adoption of an Object-Oriented paradigm into any la
guage can be expected to produce a new programmi
language. Although compatibility with current langua
standards is a must, one cannot expect to take advanta
of the Object paradigm without changing some of the co
elements of a procedural language.

EsiObjects accomplishes this rather simply. By addi ng
y

am
o
ed
u
u
y

only a few new commands and functions (Table 1) and b
augmenting some existing syntactical elements, progr
ming in EsiObjects remains very much the same as pr
gramming in standard M. Though it is not recommend
in any Object-Oriented programming environment, yo
can still program using the same procedl[cal language yo
have grown accustomed to. You can certainly execute an
existing piece of M code from within EsiObjects.

Typeless Objects
Consistent with the M programming environmen t,

The M standards body (MDC) has launched the OM
project to introduce Object Oriented Development t
This project, however, is still on the drawing board
very little to show. lnterSystems, now the lone m
implementer of M Technology, has introduced C
ObjectScript. While maintaining compatibility with
current M language standard, Cache ObjectScript
vides Object Oriented extensions to the language.
Although several beta releases of Cache
ObjectScript have been made available during the
past year, InterSystems has yet to ship a production
release. EsiObjects™, from ESI Technologies,
enjoys a large advantage in terms of product
longevity. This product has had several years to
mature and, with the release of version 3.0 just
around the comer, brings many new and exciting

~ -- $CALLER"'
a
,,
"
" ,,

features to the Object-M developer.

Although no Object-M environment has yet
received broad-based acceptance, EsiObjects is the
only currently available production Object-M
environment. This article will explore the features
found in the current product release as a basis for
what we might expect from an Object-Oriented M

26 M COMPUTING

DE{STORY}a $AS{SOCIATE}a
EV{ENT}" $CALL{BACK}a
WA{TCH}" $COPY"
IG{NORE}<> $EX{ISD<>
Zl\{PPL Y}a $EXTCALL{BACK}a

" $FREECB"

" $GETENT{RYREF}a

" $1NFOa

" $ISA<>

" $UB{RARY}a

" $LOOKUP<>

" $NORMALIZE"

" $OIDPTR<>

" $PTROIDa

" $PTRSTRa

" $QUO{fE}"

" $VALID"

" $WALKa

" $WATCH{DETECT}"

" $ZL{ENGTH}"

" $ZPl{ECE}a

$CLASSa
$ENV{IRONME NT}a
$HANDLE<>
$1N{TERFACE}"
$UB{RARY}a
$M.AXNUMa
$MESSAGE<>
$MINNUMa
$PARAM{ETERS}a
$PARAMETERLIST"
$POINTER a
$POOL<>
$PRIV{ILEGED}"
$RET{URN}a
$SELFa
$SUPERa
$SYSPOOLa
$ZVIRDATAa

"
" ,,

,,
,,
,,
,,

"
" ,,
"
"
"
"
"
"
"
"
"
"'
"'

Table 1. Es10bJects Language Extensions

September 1999

EsiObjects is a typeless environment. In this way, an
object handle may reference an object of any class. This is
not to say that EsiObjects doesn't support data typing. In
fact, EsiObjects extends the typing capability of M to
include user-defined data types. Data types in Mare lim
ited to character strings, integers and floating point num
bers (depending on the context). EsiObjects provides run
time type identification, which extends context interpreta
tion to all objects.

Variable Scoping
One common pitfall in M programming is the global
scope of program variables. Unless explicitly stacked
within a function or procedure call, any variable created
within the module is visible to all other modules. EsiOb
jects provides scope indicators that allow the programmer
to control the visibility of variables. A variable may be
visible to all executing processes (Object domain), to all
modules in a single executing process (Local), to all
objects in a class (Class), to a specific object instance

~

(Instance) or only during method execution
(Accessor/Parameter/Temporary). The default scope of a
variable (that which is effective when scope is unspeci
fied) is Temporary.

Positional, Keyword and Array Parameters
EsiObjects object methods receive parameters in much
the same form as the standard M procedure. This form
of parameter passing assigns values to parameters posi
tionally. EsiObjects extends the parameter passing
mechanism to include Keyword and Array assignments.
The "Input Specification" of EsiObjects allows the
association of a. keyword with an argument. Values may
be assigned to a keyword argument (regardless of its
position) by specifying the keyword in the method call.
Array Parameters allow a virtually unlimited number of
arguments. All arguments that positionally follow an
Array Parameter are indexed into the parameter in an
array structure.

Function vs. DO Call
EsiObjects eliminates the differentiation between a func
tion call and a procedure call. Any object method can be
invoked as a procedure or as an extrinsic function. Meth
ods with no explicit return value will return an empty
string when invoked as an extrinsic function. When
invoked as a procedure, any method return value is sim
ply ignored.

Commands
In addition to SETting and KILLing variables, EsiOb
jects provides CREATEing and DESTROYing objects.

http://www.mtechnology.org

As one would expect, the CREATE and DESTROY com
mands are similar to their standard M counterparts. Cre
ating an object, however, does require a little more effort
than setting a variable. To this end, the EsiObjects syntax
allows more information to be provided to the CREATE
command. The initial state of an object can be deter
mined at creation time through the use of keywords and
parameter and property assignments.

The Model-View-Controller architecture supported by
EsiObjects provides substance to the philosophy of sepa
rating business, database and user interface logic. This
architecture requires an event-driven application model.
EsiObjects supports the Model-View-Controller model at
the language level with the provision of WATCH and
IGNORE commands. With these commands, any object
can WATCH for events that may occur in any other
object. When the WATCHing object is no longer interest
ed in this event, it may IGNORE the event. This archi
tecture simplifies object interfacing and allows loose
coupling of interacting objects. Rather than burdening an
object with the task of managing side effects, the object
method simply does its assigned task, then notifies the
environment that an event has occurred. Any object that
is interested in this event will be notified and can then
take the appropriate action.

Functions
Several functions are introduced by EsiObjects to facili
tate the Object-M extension. As mentioned above,
EsiObjects is a typeless object environment. $ISA() pro
vides type identification at execution time. $EXIST
determines whether a variable is a handle for a valid
object. $INFO retrieves various pieces of information
about an object, including such things as the objects class
and persistence state.

Other functions have been added to simplify some com
mon tasks. These functions include $QUOTE, which will
produce a quoted string from the text argument (doubling
embedded quotes where necessary). $ZLENGTH pro
vides a quote sensitive $LENGTH (delimiters enclosed
in quotes are ignored), and $ZPIECE is the correspond
ing $PIECE function.

Environment

The perception of the quality of any programming lan
guage is based heavily on the libraries available for that
language. In object programming languages, this
depends primarily on the base classes provided with the

M COMPUTING 27

language. EsiObjects provides an extensive set of base
classe~ that provide much of the foundation for building
an obJect database application. Among these classes are
the Collection and related utility classes, Documentation
and Text classes and Immutable classes.

Immutable classes are the basis for object representations
of M primitive data types. The Immutable classes pro
vide "lightweight" objects, called virtual objects, which
add an object oriented interface to M primitives includ
ing a simple Mvariable, NameValuePair and dates and
time related classes. These classes are considered light
weight because the only data space allocated to the
object is the object handle itself. The object wrapper
provides properties and methods that interface with
value of the object handle. Virtual objects also provide
the foundation for legacy database wrappers in much the
same fashion.

Documents and related classes provide handling for text
blocks. These classes provide several string and docu
ment-related utility methods. A consistent interface to
multi-line text blocks provides insertion, removal and
searching capabilities. These classes can provide a con
venient basis for supplying flexible support for large text
blocks to any application.

Collection classes (and their related utility classes) are
the core elements of any database application. The data
base itself is a collection of objects. Most data used by
the application are processed in collections (lists, arrays,
e~c.). For this reason, the Collection class is probably the
smgle most useful class in the library. The Collection is
an abstract placeholder for more specialized collections
(lists, arrays, bags and maps). Each of these specialized
collections is managed and accessed differently. Howev
er, the Collection class defines a consistent interface to
these collections. This interface includes the Iterator, for
sequential traversal of the objects, and Criteria objects to
conditionally select objects from the collection.

The base classes are made available through the two pro
vided class libraries Base and ESI (Figure 1). In addition
to these libraries, EsiObjects allows the developer to cre
ate custom class libraries. An EsiObjects library may be
Concrete or Virtual. Concrete libraries contain the actu
al class definitions. Virtual libraries provide a means to
group classes from the concrete libraries. Libraries are
typically created to group classes by application. Utility
libraries, such as the EsiObjects Base Library can be cre
ated for reuse among multiple applications. An optimal
way to use these libraries would be to create Concrete

28 M COMPUTING

Figure 1

utility libraries and assemble Virtual libraries for appli
cations.

Tools
The most visible part of any development environment
is the tool set. EsiObjects doesn't disappoint here.
EsiObjects provides an integrated development environ
ment including Class Editors, the Execute Shell, Object
Browsers and a Source Level Debugger.

The first tool to become familiar with iithe Class Editor
(Figure 2). The Class Editor is a combined Class Brows
er and Editor. Facilities are available for searching, cre
ating, editing and deleting classes. The class editor is
opened in association with a class library. The editor
presents a three-pane view of classes in the library. The
class hierarchy can be traversed using the tree view pre
sented in the Class Editor's left pane. When an element
(class, variable or interface) is selected in this tree view
the right pane displays pertinent details. Documentatio~
is displayed (and can be edited) in the lower pane.

The Method and Property editors use a variation on this
three-pane view providing the code, documentation and
revision history in separate, visible panes. The code is
edited in place in the left pane. A Right-click in this pane
provides an extensive list of options including syntax
checking, saving and compiling options. The right pane
displays documentation for the method being edited and,
as with the class editor, can be edited directly in this pane.
The lower pane of this view displays the revision history of
the method. A new version of the method can be created at
any time in order to preserve existing working versions. Any

September 1999

s-~
. !Ml Variables . Y AbsLockableObject

-ll!t !=actory . . '6 ArrEI-f
--!JI:! Internal ~l air. Bag
~ LockComrol if ti,, CollectionProtector

--Iii! Primary ~ la Dictionary
2· © Arr<J,J air. List
:.:©Bag . £Log
~· § CollectionProtector ':!J' f Map

":"""' ~.· , .. ,. ,,, .,.,n, ·'··""··-'·. , .. -~, A.J.M!1fti.~,::11n ___ L•..c --- ,,- ~"'---•-•'"- po,eiJY-"

Execute Shell. Using this shell,
you can execute commands and
methods from within the scope of
the active object. This is a very
convenient way to test and debug
classes. The effect that method
execution has on the object can be
seen immediately in the contents
pane.

The Abstract base class for all OMDG complient classes. This class defines the bassic ODMG interface.
Operations that rel'.{ upon OQL statements are not yet supported.

To add even more debugging capa
bilities, version 3.0 of EsiObjects
introduces the Source Level
Debugger. While the Object
Browser allows you to view the
overall effect of method execution,
the Source Level Debugger allows
you to step through the execution
of a method. The debugger can be
activated within any object that has
been compiled in debug mode. The
debugger provides controls for

Collections are denned to be arrt ordered or unordered gathering of elements. Elements m<J,J be
hom-0genous or heterogenous. may or may not be objects. Collections can have elements ploced within
them and return elements that reside in them. The eXisting subclasses of collections are:

Figure 2

version of the method can be displayed by selecting the
desired version from the revision history.

The Execute Shell (Figure 3) provides a programmer
prompt-like interface to EsiObjects' object environment.
From the shell you can interact with the environment and
create and manipulate instances of classes (objects). This
is a convenient means of testing and debugging class
methods and properties.

The Object Browser is available from the Execute Shell.
An Object Browser can be opened for any existing object.
Within the Object Browser, you can view the entire con
tents of the active object in the object view pane. The
Object Browser can also "step into" objects contained in
the active object, allowing easy exploration of related
objects. In addition, the Object Browser contains its own

Figure 3

http://www.mtechnology.org

continuing execution, stepping into, over and out of com
mands and variable watches. The debugger also displays
the contents of the objects (similar to the Object Browser)
and the class call stack, providing a complete context to
the executing method.

Conclusion
While it is difficult to determine exactly what impact the
Object world will have on our world of M, EsiObjects pro
vides many hints into the possibilities. The seamless exten
sions that provide Object-based services without sacrific
ing compatibility with the standard M language suggests
that a relatively smooth migration is possible. The tools
provided by EsiObjects are a shining example of the
potential capabilities of the underlying environment.
Using EsiObjects as a guide, it is not difficult to envision
M succeeding in the Object Database world just as it has

in the Relational Database world.

Fred Boles, (jdboles@home.com) is a TekMet
rics certified Master M Programmer with nine
years of M programming experience in the
finance industry, as well as five years in tech
nology research specializing in Object Orient
ed Software Development technologies.

M COMPUTING 29

