
TECHNICAL PAPER

Using M to Navigate Multiple Step
Clinical Algorithtns Over Titne

by Marilyn D. Paterno, BS, B.Mus.; Rita D. Zielstorff, RN, MS; Mark Segal, MS; Jonathan M. Teich, MD, Ph.D.;

Gilad J. Kupennan, MD, Ph.D.; Roberta L. Fox, MS

[See Discussion Session by the same title in the Strategies
and Solutions program on Monday at 4:00pm.J

Abstract
Clinical algorithms provide step-by-step instructions for
clinicians caring for patients with a specific problem. We
have designed and implemented a multi-step logic
processor that evaluates incoming data, makes recom
mendations, and manages the algorithm over time.
Though designed for a health-care environment, it is not
limited to medical settings. This article will focus on two
aspects of the application: its platform-independent
object design, and the M engine that drives it.

Introduction
An algorithm in its simplest form evaluates data and
returns a result. In our setting, the data may be provided
either by a user in the form of an interactive on-screen
questionnaire, or from the database. An example of this
might be a questionnaire, which an emergency depart
ment clinician completes; the algorithm returns a recom
mendation of whether to order x-rays. The algorithm in
this example is completed in a single session. This means
that data is gathered, evaluated, and the recommendation
returned while the clinician waits at a workstation, then
the algorithm ends. In that aspect it is typical of most
computerized algorithms or clinical alerting systems in
place today. We were presented with the task of provid
ing more complex algorithms: for example, a guideline
for the treatment of hypercholesterolemia, which needs
to evaluate decisions made by the clinician, current ther
apies already in place for the patient, and the results of
laboratory tests performed over time. Typically, such an
algorithm is represented as a flowchart, with multiple
decisions that must be made at various points in the
process. We did not find any implemented examples of
algorithms that can run as complex a treatment guideline
as we required, although work is being done on their rep
resentation. Therefore, we decided to define and write
our own [l].

12 A1 COMPUTING

In 1996 when we began the project, all data was stored in
M globals and processed with routines written in DTM.
Since data in this environment is accessible to all appli
cations, the development of decision support systems is a
great deal easier than it would be in other, more disparate
systems. A new platform was being developed for our
organization, however, with a three-tiered architecture
and a new user interface. That led to the partitioning of
application components into three logical groups, or ser
vices: user interfaces; logic processing; and data retrieval
and storage. To facilitate the development of the algo
rithm project we decided to remain in the integrated
DTM environment in order to take advantage of the large
dataset and applications available, but to write separate
modules for each component. In this way, we could be
prepared to move one or more components to the new
platform as it became feasible.

Object Design \:.:
Drawing on the representation work of the InterMed Col
laboratory [2], and using standard logic flowchart con
ventions, we deduced that two types of steps are needed to
complete a complex algorithm: a "decision step" to eval
uate rules, and an "action step" to perform all other tasks,
including running questionnaire programs, sending mes
sages to the user, and waiting for future events to occur.
Some type of branching information is also necessary in
order for the algorithm to know where to go when each
step is completed.

At the time we designed the project, we did not have
available to us any object modeling tools within M, and
used a commercial diagramming tool to produce three
models. Following the guidelines Rumbaugh [3] pro
vides, we developed a problem statement (see Fig. 1),
from which we expected to derive a list of objects for the
algorithms. Using the problem statement, we isolated
potential objects from nouns within it, associated verb
phrases with each object, and proceeded to develop the
model. The object model (Fig. 2) contains classes with
attributes (properties) and operations (methods).

September 1999

Problem Statement:

In the course of treating pattent.sfor a given condition. there are preferred courses of action
which have been shown to be effective. When a patient presents with a conditionfor which such
a guideline is available, the computer will pre.sent ita.s an option to befollowed. Upon
acceptance by the clinician. the guideline is started by updating an algorithm activitp locfor the
patient, then calling thefir.stofn steps. each ofwhich performs one or more tasks. updates the
algorithm activitp log, defines the current state of the algorithm, and points to the next step.
Tasks may take theform of(a) actions. po.s.sibfp requiring a response. and (b) decisions. which
evaluate rules in order to determine the next step. A rule includes one or more conditions to
evaluate and is processed by an event entfne. Actions may include (1) prouam.s to be run, such
as a questionnaire presented to the clinician, (2) mes.sages to the clinician, such as a
recommendation with .suggested order sets. and/or (3) events which mu.st take place before the
guideline may continue, such as the availabilitp ofrequired data or the pas.sage of.time. A
dispatcher sends rules to the event engine to evaluate the events and returns results to the
guideline. The presence of .such an event in a step places the guideline in a 'waW state until the
result r eturn.s. Jhtifica tion of a mes.sage '.s pre.sen ce may be via dire ct .screen intervention, email
pager, or update to a general mes.sage handler. What steps are to be called next may be
con.strained by the result of a rule evaluation, whether or not a user is pre.sent, and/or the
nece.s.sityfor .synchroni.i:ation with other steps. When the .step.sfollowedreach the end, the
guideline is completed, and the algorithm activity log is updated with a 'closed' state.

'°' Figure 1. Problem Statement

Algorithm updates P:atient Active
Algorithm Log

Name
Notification

Intent current state
Source current step

- Who Owner/Editor step updates: patient
How Ournrnary

_I guideline
Message References: 1+ Name data items:

Enable ~ Type

I
Step list "'"i,~g

9,e,r.(orat,e,5
communicates:'!"ith I

I
Rule Decision step Action step

Logic list
uses

Logic list Message fype
Program fype
Action list
Explain text
Wait logic

I
triggers I calls: I builds:

'Nait Until Questionnaire Recom mend:ati on

uses
Type Name Message text
Logic list Question list Action list

Scoring flag

Figure 2. Object Model (some details are omitted for clarity)

http://www.mtechnology.org M COMPUTING 13

The functional model, or data flow diagram (Fig. 3), dis
plays the project's data stores, actors, data flows, and
processes. Although this model shows the functions that
move data, it does not place them into any time frame or
relate the flow to temporal events. This model allowed us
to understand the flow of data first, which in tum deter
mines what needs to be written to produce each move
ment. Having completed it, we were able to go back and
revise the object model, inserting operations that would
be needed into the proper class descriptions, and adding
attributes as they were discovered.

Time is shown by the dynamic model. We developed this
model in three parts: first, we wrote scenarios describing
events as they occur; next, we traced the events in time,
putting each in its proper chronological order; last, we

Rules

trigger data

determined the state of the class at each event. For exam
ple, when data is outstanding, such as a lab result not yet
filed, the step may be said to be "waiting". From this we
created a state diagram for the step class, and one for the
algorithm class. This proved to be quite helpful when we
designed the patient-centered algorithm activity log that
would contain all information on the running of an indi
vidual algorithm. We store with each step a flag indicating
the current state of that step, which is used to determine
the state of the algorithm.

The models went through several iterations, as our
understanding both of our application and of object
methodology developed. Although each model can
change over time, the overall design is stable. When
enhancements are proposed, we revisit the models to

Process 0
Data Store

Actor D
Data Flow 4

Algorithm
Activity Log

definition event data alert

Event

L
data

action list.
alert data

Pati en! Data

current state

step data,
response

response

message data

current state,
patient data

current state,
patient data

step data, alert data

message data

patient data

Figure 3. Data Flow Diagram

14 M COMPUTING September 1999

determine the impact of the enhancement on the entire
project.

Processing Engine
Algorithms are processed by a set of routines that we call
the Navigator. An algorithm session may be initiated with
a request from the user, or when an event occurs that
triggers the creation of a new or resumption of an exist
ing algorithm. For example, the hypercholesterolemia
algorithm may be triggered when a new cholesterol result
is filed for the patient. If an event initiates the session,
the Navigator may notify the clinician that the algorithm
is available for initiation or that a session has been initi
ated, using one of the means described in the problem
statement.

The Navigator operates in two modes: interactive, where
the user is present at the computer; and background, or
non-interactive, where the user is not present and must
be notified when changes occur in the algorithm state.
Instances of algorithm logic which need to be evaluated,

~~~9::?~~';:e~r l --~ 

Time setf?r return) .. ~ 
hasamved. 

WaitforLDL 
or 

1 year. 

I• I Recommend LDL 
be done. 

Yes 

including decision step logic and time-triggered events, 
are stored as rules and evaluated by an inference engine 
which is already in place in our organization [4]. This 
engine returns result data in a message to the Navigator. 
As it processes steps, the Navigator logs changes in state 
along with the data affecting or affected by such change, 
sends messages to the user, receives and acts on user 
responses, requests logic evaluation from the inference 
engine, and determines the next step. A session ends 
when the last step has been processed, the user elects to 
remove the patient from the algorithm, or a wait state is 
reached. Wait states occur when the current step needs 
additional data not presently available in order to com
plete its task. A wait state may end automatically after 
the passage of a specified period of time, when an event 
occurs which sends a message to the algorithm, or when 
the user returns to the computer and invokes the algo
rithm program again. Figure 4 illustrates an algorithm 
that includes wait states, triggering events, decision and 
action steps. 
The Navigator is comprised of six modules. These con-

>-----No a/ 

Yes 

No 

Consider starting 
:statin 

New LDL result 
filed. 

Yes 

Yes 

., 

I Wait3 months Recommend Statin 
or for new ~ be started or ~ 

LDL. optimized 

Figure 4. Glowchart Example: Guideline for Secondary Prevention of Cholesterol (reduced for space). 

http://www.mtechnology.org M COMPUTING 15 



trol its flow, load data, process tasks, call messaging func
tions, run programs, and file the data to a patient-specific 
algorithm activity log. The controlling routine sets up the 
environment, determines the current step to be processed, 
and calls the load module to retrieve the algorithm defini
tion and log data for that step. It then calls a recursive sub
routine, NAVIGATE, which receives the current step iden
tifier as its only parameter. 

NAVIGATE calls the task module, which creates a list of 
tasks, performs them, and evaluates the results. There are 
four types of tasks: messages, programs, rules, and wait 
actions. When creating the task list, the task module deter
mines if a user is present or needed, bypassing tasks that 
require user intervention when none is present. As it 
$Orders through the task list, it calls messaging functions 
and/or programs as they are needed, passing in a data array 
and storing results returned locally for later filing. It pass
es rules to the inference engine for evaluation; last of all it 
looks for wait actions which need to be triggered. Before 
returning to NAVIGATE, the task module determines the 
current state of the step it has processed, and also that of 
the algorithm. 

Once the task module is finished, NAVIGATE determines 
the next step, calling the load module to retrieve its defin
ition data and set up a log record. When finished, it calls 
itself again at the top, passing the step identifier as its para
meter (Fig. 5). If there is no step to be run, either because 
the algorithm has ended or has entered a wait state, the 
parameter is an empty string, and the NAVIGATE subrou
tine ends. The controller module then calls the filer to 
update the algorithm activity log, cleans up the environ
ment, and quits. 

NAVIGATE.(CURSTEP) ; 
S LOGN=$S(STR]"":"STR",1:"AI.R") 
K@TASK 
D LOADTASK"ALGNA VT ASK(LOGN,.TASK,.MESG) 
I '$$RUNTASK"ALGNA VTASK(.TASK) S STEPN="" 
E S STEPN=$$WHERETO(LOGN,@LOG@(@LOGN,"STATE")) 
I STEPN DNA VIGATE.(STEPN) 
Q 

Figure 5. NAVIGATE subroutine 

Lessons Learned 
The algorithm project has been successful, and several 
clinical practice guidelines have been created and activat
ed. Version 1 of the application did not include time 
delay processing or non-interactive notification. In ver
sion 2 we have added eligibility triggering of algorithms 
by outside events as well as time delays which wait for 

16 M COMPUTING 

events to occur. 

To use object design within a language that is not object
oriented takes a great deal of discipline. One cannot sim
ply begin writing program code. While we cannot refer
ence objects with a specific object syntax, we can define 
them concretely, provide a standard method of access, 
and see clearly what pieces need to be isolated. As an 
example, instead of including in the same M routine data 
access code, data manipulation code, and data entry 
code, we need to separate those functions, so that each 
can be called by an independent process, passing along 
needed parameters. 

Conclusions 
Looking back over three years spent in system design, 
object modeling, programming, testing, and running clin
ical algorithms, we have reached two conclusions: first, 
that the time spent on object design was well worth the 
effort. It increased our understanding of what we were 
doing, forced both programming and non-programming 
designers to communicate clearly, and clarified the issues 
so that programming could be accomplished that would 
support future change as well as present use. Although it 
would have been nice to have technology available with
in our M environment to assist in the design, we expect 
to be able to redefine the objects from our models using 
such technology now that it is beginning to be available 
to us. 

Our other conclusion is that the isolation of M functions 
is the single most important programming step we took. 
In the past, when M was operating system, user interface, 
data storage, and programming language, it did not mat
ter very much that all its functions were in the same rou
tines, even within the same code lines. By keeping data 
access separate from user interface, and logic processing 
separate from both, we can continue to use M where the 
environment supports it, and can call the other functions 
where it is necessary. At the present time we are still 
using M for all parts of the application; data access, user 
interface, and logic processing. Changes are expected to 
take place, the first most likely to be the user interface. 
Isolating calls to the screen within the processor will 
make this task easier, and by standardizing the data for
mats we will be able to use more than one interface dur
ing a transition process if needed. Although the current 
database is not planned to move from M globals, it is pos
sible that over time there will be additional data sources 
in use. We think we have allowed for that possibility by 

( continued on page 18) 

September 1999 



(from page 16) 
separating the data access functions into a separate load 
routine, into which we can insert external calls to load 
data from another source. By isolating messages and pro
grams as functions, the Navigator does not need to con
cern itself with the user interface being used. By isolating 
the load and setup of data arrays into separate routines, 
they may be modified to make calls to other data sources 
without the Navigator being concerned. 

Endnotes 
[1] Zielstorff, R.D., Teich, J.M., Paterno, M.D. et al., "P-CAPE: 
A high-level tool for entering and processing clinical practice 
guidelines", Proceedings of AMIA '98 Annual Symposium, 
Chute, C.G., ed. (Hanley & Belfus, Inc., Philadelphia 1998) 
478-82. 
[2] Ohno-Machado, L., Gennari, J.H., Murphy, S.N., Jain, 
N.L., Samson, W.T., Oliver, D.E., Pattison-Gordon, E., 
Greenes, R.A., Shortliffe, E.H., and Barnett, G.O. "The 
GuideLine Interchange Format: A Model for Representing 
Guidelines", J. American Medical Informatics Assoc. 5(4):357-
372, 1998. 
[3] Rumbaugh, J., Blaha, M., Premerlani,W., Eddy,F., and 
Lorensen,W. Object-Oriented Modeling and Design (Englewood 
Cliffs: Prentice-Hall Inc., 1991). 
[4] Kuperman, G.J., Teich, J.M., Bates, D.W. et al. "Detecting 
alerts, notifying the physician, and offering action items: a com
prehensive alerting system", Proceedings 1996 AMIA Annual 
Fall Symposium, Cimino, J.J., ed. (Hanley & Belfus, Inc., 
Philadelphia 1996) 704-708. 

Email (principal author): mdpaterno@partners.org 

The Clinical Algorithm Project was written using the 
Brigham Integrated Computer System (BICS) and runs at 
Brigham and Women's Hospital and its affiliated ambula
tory practices, in Boston, MA. Marilyn Paterno is Team 
Leader for the Clinical Systems Research and Development 
Group at Partners HealthCare System, Inc., Boston, MA, 
and serves as Technical Lead on the project. 

Other members of the development team are Rita Zielstoif.f, 
Manager, Mark Segal and Roberta Fox, Systems Designers, 
and Saverio Maviglia, Clinical Research Fellow. Jonathan 
Teich is the Director of Clinical Systems Research & 
Development. Gil Kuperman is the Manager and principal 
architect of the BICS Clinical Alerting System. 

18 M COMPUTING 

Advertiser Index 
We appreciate these sponsors of the September 
issue and all the companies who support the M 
community through their commitment to excel
lence. 

Career Professionals Unlimited 
CyberTools, Inc. 
ESI Technology Corporation 
George James Software, Ltd. 
Henry Elliott & Company, Inc. 

InfiniMed, Inc. 
InterSystems Corporation 
Jacquard Systems Research 
KB Systems, Inc. 

25 
25 
35 
45 

1 
Back Cover 

Inside Back Cover 
47 

Inside Back Cover 
18 

This index appears as a service to our readers. The publisher does 

not assume any liability for errors or omissions. 

KB_SQL Version 4.0! 
The proven SQL/ODBC solution for all 
M types, including Cache 

• Full-featured reporting environment 
• Works with Crystal Reports, Microsoft 

Office, and more 
• Supports updates of your M data via 

SQL commands 
• Seemless integration with VA 

Fileman databases 

Ks 
Want to know more? 

www.kbsystems.com 

KB Systems, Inc. 
Voice (703) 318-0405 

©1999 KB Systems, Inc. 
All products are registered trademarks 

of their respective companies. 

September 1999 


