
FEATURE ARTICLE

An Object Oriented Application
in EsiObjects

by Steven Popkes

B
y the spring of 1998, ESI Technology had com
pleted a non-trivial project that put the object par
adigm to the test in the M community. This paper

reviews our methods and results.

The Goal

The Department of Defense wished to modernize their
hospital information system (CHCS). Part of the project
involved repr~enting the information stored in a CHCS
File Manager database in an object oriented way. The
File Manager and CHCS code were not to be used. The
database wrapper had to be complete in and of itself.
EsiObjects™ was chosen as the appropriate technology.
The CHCS database contains thousands of patients in
the system. Each patient has several hundred fields of
varying types including data fields, enumerated fields and
pointer fields. A subset of the patient record, called
the"MiniReg" fields, were chosen for the proof of con
cept. These fields included such data values as name,
date of birth, branch of service, etc., and were intended to
act as the minimum registration of a patient until the full
registration could be done.

The resulting collection of objects would have to create
new patients, update old patients and be able to operate
in parallel with the existing CHCS system. In addition, no
part of the original CHCS system could be used in the
project. We were instructed to consider FileMan, CHCS
and other existing software as disposable and not to rely
on them.

Clearly, with the large number of fields and files that
were to be accommodated, some automated means
would have to be used to generate the code. The process
flow is shown in Figure 1. The construction of the com
piler and its support classes is not the focus of this article.
Instead, we will discuss the approach we made in design
ing the classes that were to be generated by the compiler.

http://www.mtechnology.org

Repository!
library

Spec
Library

compiler

1

7 I I
manager 1.-creates_J_createst,
classes

l

Model
Library

I
7

data
classes

I
inherits from inherits from

l
root

manager
class

Figure 1. Process flow

Objects

l
root data

class

We will not go into the fundamentals of objects in gener
al within this article. Some familiarity with the object par
adigm is assumed. Further, information is available in
Object Oriented Technology: A Manager's Guide, or Busi
ness Engineering with Object Technology, both by David A
Taylor. There are also numerous other such references.

EsiObjects is a formally defined representation of the
object paradigm. It presumes that the only means by

M COMPUTING 9

Attribute:

method 1

instance variables

ms ce
of class
Patient

class Patient

class variables

method 2

instance variables

ms nee
of class
Patient

Figure 2. Variable types

which information can be propagated from a method
directly to the caller is by returning a value.

As in other object languages, EsiObjects separates the
code and state of the object. The executable code resides
in classes and is available to all objects of the same class.
Code is executed in segments known as methods or prop
erties. Methods or properties can be grouped together in
interfaces. An example of the syntax of a method call
would be:

S A%X=A%Oid.Internal::Filter

In the above, A%X and A%0id are variables. The peri
od (" .") separating A %0id and Intemal::Filter indic~tes
that A %0id contains an object identifier. Intemal::Filter
identifies a method (Filter) in an interface (Internal) in
that object. EsiObjects provides the first interface for a
class, the Primary interface.

The state of the object is represented by the variables
contained within the instantiation of that object. This is a

10 M COMPUTING

State of
object 1

m ance
of Class
Patient

class Patient

method 1 method 3 method 2

State of
object3

Figure 3. Object state and method relationships

common dichotomy: code is the province of the classes
and state is the province of the instantiation of those
classes. Often the state of the object is unique to the
object. This is an important difference between 00 code
and non-00 code. For example, a given function in M
might have state that is local to the function for the dura
tion of the call. The scope of EsiObjects variables can be
limited to the duration of a function call, the lifespan of
the object instantiation, or be shared between all instan
tiations of the same class.

The lifespan of method variables is limited to the call to
a given operation. This is similar to the way that the
NEW command works, though the mechanism is imple
mented differently. In addition, variables have a lifespan
that is associated with the lifespan of the object. These
instance variables are available to all operations of the
object. In EsiObjects, class variables are available to
instances of a given class. The different variable types are
illustrated in Figure 2. Method variables are local to the
state of a particular object and associated with the oper
ation of a method in the class. Instance variables are
available to all methods of the particular object. Class
variables are available to all members of the class.

Syntactically, variables are scoped by a prefix. A%* vari
ables are method variables, 1%* variables are instance
variables and C% * variables are class variables. This
avoids the necessity of some sort of declaration command
within the EsiObjects code. There are also means by
which variables can be created automatically when the
object is instantiated.

July 1999

Variables are protected within their scope. Method vari
ables are not exposed beyond the confines of the method.
Instance variables are not exposed beyond the confines
of the object and class variables are not exposed beyond
the confines of the class. This means that a given method
operating on an instance variable, for example, can be
guaranteed that the contents of the variable are reserved
for the local instance and no other.

The relationship between object state and object code is
shown in Figure 3. Notice that though the state is unique
to the instance of Class Patient, the code is unique only to
the class. It is worth repeating that state refers to the data
associated with the instantiation of the class and is sepa
rated from the code, which is associated with the class.
This allows the code to be shared between objects while
preserving the integrity of the variables. The protection
of variables within their scope is called encapsulation.
This project would have been much harder to complete if
EsiObjects ha.q not supported encapsulation.

Another quality of objects derived from classes is inheri
tance. Inheritance means that the structure of an object
as defined in the class of that object can be inherited from
other classes. For example, patients share many similar
qualities: date of birth, sex, name, etc. However, a
patient that is also enrolled in military service will have
qualities unique to the fact he is in the Army or Navy. He
will have rank, a military service number, perhaps a duty
station etc.

If we build a description of patient class inheritance (as
shown in Figure 4) we would expect the common com
ponents of patient to be part of the patient class. The
Army patient class would have components peculiar to
the Army, but also inherit the more general properties of
the patient class.

Methods, properties and instance variables of a given
class can be inherited from the class's parent. However,
methods and properties can be overridden. In Figure 4,
the method Address Validation is common between both
the general patient class and the Army patient class.
Note, however, the method is located in both places. In
this case, the AddressValidation method of Army over
rides the Address Validation method of the general
patient class.

This behavior was important to our design because it
allowed us to write general methods that could then
operate against specific local methods and properties.

http:/ /www.mtechnology.org

class Patient
DateOfBirth
Name
Address Validation

inherits from-

class ArmyPatient
Rank
Address Validation

Figure 4. Patient Class inheritance

This description is somewhat abstract in order to place
EsiObjects in the same venue as other object oriented
languages. EsiObjects derives from M but implements all
of the fundamental aspects of the object paradigm: inher
itance, encapsulation, message, etc.

The Design

The intention of the class design was not to solely repre
sent the patient database. Instead, we planned to be able
to represent all of the relevant data associated with any of
the File Manager files used in CHCS. The design, there
fore, had to be specific enough to manage the data effi
ciently and flexible enough to be used across very differ
ent file designs.

The initial class design is shown in Figure 5. Note that
there are three fundamental classes. These are the Man
ager class, the Data class and the System class. An instan
tiation of the System class was intended to act as a means
by which objects were created and tracked. In this way,
the objects could be maintained along in parallel with the
existing CHCS system. As objects reflecting individual
records were looked up, they were compared against a
master list and against the actual global reference.
Objects that were no longer valid were automatically
deleted.

M COMPUTING 11

Data
general record
methods and
properties

inherits from

Patient
patient
properites

Figure 5

instantiated
from

instantiated
from

instantiated
from

m
system methods
and properites

consults-

ana er
manager methods
and properties

inherits from

PatientM r
patient specific
manager
properties

instance of instantiated
PatientMgr ,... from

instance
of Patient manages-

instance
of Patient manages-

instance
of Patient manages-

Figure 5. Initial Class relationship design

The remaining two root classes, Manager and Data, had
to do with the management of the actual data. All data
bases have to support two essential sets of operations: 1)
operations associated with the collection of components
that describe a "record" and 2) operations associated
with deriving a collection of "records."

The Manager class served up objects associated with par
ticular criteria. The Data class represented all of the data
associated with a "record." The intention was to make
the Manager and Data classes as general as possible and
to delegate the specialization of the data to the specific
class. In this design, every File Manager file exposed in
this system would have two classes representing it, a Data
class and a Manager class.

Objects are often classed as "light" or "heavy" according
to the amount of data contained in their state. We intend
ed that each object would be as light as possible.

In the case of the Manager classes, the state could be

12 M COMPUTING

made very light indeed. Each instantiation of a Manager
class required only four pieces of information. This made
it possible to take advantage of the EsiObjects virtual
class construction.

A virtual class has no real state in the normal sense of the
term; virtual classes have no instance variables. Essen
tially, all methods in a virtual class must be able to oper
ate without any information that's not immediately avail
able to them. Such information must either be passed in
or be present in a special variable ($ZVIRDATA) that is
potentially unique to any virtual object. Information can
be associated with a virtual object at the time of creation.
This is done by passing a string to the CREATE com
mand. Later, the code of the virtual object can retrieve
that string by referencing $ZVIRDATA. In effect, a vir
tual object can be viewed as an object that has a single
instance variable: $ZVIRDATA. This approach was suf
ficient to pass in all the information to an instantiation of
a Manager class.

We determined that each Manager class would have a
''weight" of at most a hundred or so bytes. Since each file
and subfile would have only a single Manager object, the
cumulative weight would be at most a few hundred K
bytes. This was not considered excessive in a database of
several gigabytes.

In the case of the Manager classes, we were helped by the
regularity of the File Manager lookup. The File Manag
er lookup process is very complex but it is also common
to all of the files. Consequently, the specialization of
screens, filters, etc., could be preserved in methods for
each of these operations. For example, the Internal::Fil
ter method is used to mimic the action of a File Manag
er screen. The method returns either a O (failure) or a 1
(success) to determine whether or not to include a par
ticular object in a lookup collection.

In figure 6, the method "Internal::Filter" is implemented
in the root Manager class as merely a "Q 1", returning
success on any object. This is the default. Its descendant,
the PatientMgr class, has code associated with it that fur
ther specializes the process. Since the Internal::Filter
method of the PatientMgr class overrides the
Internal::Filter in the root Manager class, when an
instantiation PatientMgr class executes a lookup, the
PatientMgr Internal::Filter method is executed. For files
that have no screen, the Internal::Filter method for that
class would never be implemented and the Internal::Fil
ter of the root Manager class would be executed.

July 1999

This is a general pattern of implementation development
not only in EsiObjects but also in other object oriented
languages. The process is to 1) determine the root or
default form of the method. This can be as simple as a "Q
1". 2) Specialize the method for the individual classes. 3)
Design general code to use the method by name and
parameter, neglecting the specifics of how it is imple
mented. In this way, the same code can reference the
appropriate method. The method itself can be anywhere
in the inheritance hierarchy. In the example of Figure 6,
for any given lookup class, the method can either be
local, such as in the PatientMgr, or in the parent root
Manager class.

cla_ss Manager

lnternal::Filter

·'"'\
01

"

inherits from

class PatientMar

lnternal::Filter
i $$1nactiveO Q 0
e Q 1

Figure 6. Implementation of "Internal::Filter" Method

The Data classes were more difficult to implement than
the Manager classes. They had to be heavier since they
had more specific information to maintain. For example,
the Data root class had an internal variable and matching
property to contain the "root" of the object: the actual
global reference. Methods across the class used subscript
indirection to retrieve global information for processing.
For example, in the following structure,

ADPT(n,l)=dataAdataAdate of birthAdata

Date of Birth is contained in the third piece of the struc

http://www.mtechnology.org

ture, the number 1 is the node specifier and n is the File
Manager Internal Entry Number. Consequently, for an
IEN of 50, the instance variable !%Root would be:

I%Root=" ADPT (50)"

In the property, DateOfBirth, in the value accessor, we
might expect to see the code:

S A%Value=@I%Root@(l)
S A%Value=$P(A%Value,"A",3)

These sorts of retrievals were created in the classes by the
compiler.

The method from then on would have the data contained
in the method variable A% Value to operate against. At
the time the object was created, the value of !%Root
would be set. From then on, it would be available for use
by the methods. Because !%Root was encapsulated
according to the standard object paradigm, an individual
instance of an object could guarantee that !%Root was
always unique to itself. Therefore, we could use !%Root
with impunity without worrying that it would conflict with
the state of some other object.

We intended to keep the state (the instance variables) as
light as possible. Ultimately, instance variables are stored
in globals and take up space. Also, the number of objects
was to be multiplied considerably since a File Manager
record would have a corresponding object to represent it.

Since we were using data already existing in globals, the
value of the instance variables serves only to map a path
to the actual data. The majority of the intelligence in the
class was located in the method and property code. We
only kept information such as the root, the internal entry
number, the object id, etc., local to the specific object.
For this reason, though the Data classes were not as light
weight as the Manager classes, we did not feel they were
prohibitively heavy.

File Manager records were now represented by a corre
sponding class and were accessible by a call to a single
instance of a class that was designed for that purpose.
However, as we were working on this project, it soon
became clear that a fa<;ade class would be useful. ·

A fa<;ade is a class whose purpose is to present a particu
lar API to the caller, while isolating the caller from the
complexity of the underlying activity. Fa<;ades were devel
oped originally to present a common interface over dif--M COMPUTING 13

fering subsystems; for example, a single API to commu
nicate with both M and a relational database. However,
we extended the concept to present differing views of the
database, thereby hiding the complexities such a view
represents. A full explanation of fa~ades, as well as other
design patterns, can be found in Gamma's fine book,
Design Patterns: Elements of Reusable Object-Oriented
Software.

Recall that in this proof of concept project, we were first
building a limited representation of the patient database,
MiniReg. We realized that a MiniReg operation had its
own issues and limitations such as completeness, a pseu
do-transaction structure and combined representation.
For example, if in the validation, a single property failed,
it should fail the entire registration so that the database
was not erroneously incomplete.

For this reason, we developed the concept of a client
class. A client class is not compiled as are the Manager
classes or the Data classes. Instead, client classes are
developed for specific needs. A client class could be con
sidered analogous to the relational database concept of a
view. The client class MiniReg did not inherit from either
the Manager or Data classes; it had no direct parent
classes at all.

Figure 7 shows how these different representations oper
ate in the live system. An instance MiniReg would have
associated with it an instance of the Patient class. Each of
the properties being set in MiniReg would be processed
against the corresponding property. When the MiniReg
object is first instantiated it loads itself from the Patient
instantiation. The MiniReg is not persistent and there
fore can process requests faster. MiniReg persisted the
data by first validating it and then sending the data to
Patient to be stored.

Conclusion

Several techniques, patterns and principles suggested
themselves in the building of this system.

Implement generally. We found ourselves following one
scenario in design over and over again. First, we would
decide we would need a particular method in a particular
class. After we had decided what was needed, a general
way to represent the same information presented itself.
This was then incorporated in the more general parent
class.

Use inheritance intelligently. This is the corollary to

14 M COMPUTING

global data

read/write

instance of instance
PatientMgr 1-----....i of Patient

,__ ____,. instance
of Patient

consults manages

instance
of System

Figure 7

1---------..i instance
of Patient

~---------- instance
of Patient

external
world

Figure 7. Operational Design

preprocesses

implementing generally. Each class shot&d handle its own
duty and only its own duty. Several times in the building
of this product, we inadvertently built a method or prop
erty that did not directly apply to the purpose of the class.
This always became problematic and needed to be recti
fied.

Preserve the integrity of the interface. By this, we mean
the designed intention of the APL In our design, we used
the Esi0bjects Primary interface to represent the prop
erties that directly represented File Manager fields and
then created other interfaces to support the operation of
methods and properties of the Primary interface. Several
times as we were figuring out the best path, we compro
mised the primary interface with the best of intentions. It
always came back to haunt us. The cost of violating
design principles is much higher in 00 than in other par
adigms.

Use state intelligently. In our project, state was very
important. Had it gotten out of control we could have
had a wrapper of a database that was as large as the data
base itself. We were helped immeasurably by the encap
sulation feature of Esi0bjects. Encapsulation enabled us

July 1999

to guarantee that the state of a given object was unique
to that object. This simplified the required code for each
property to the point that it could be easily compiled.

Fa<;ades trump complexity. The MiniReg class served as
an intelligent fa<;ade for the Patient class. Initially, we
built it as a means by which we could test the product.
Quickly, the MiniReg class became the preferred mech
anism for mini-registration. Because the difficult data
base work was maintained in the data class, the MiniReg
class was simple enough to include all of the checks we
needed for MiniReg as a whole. It made the testing and
the operation of the product much simpler. The
MiniReg fa<;ade hid the complexity and exposed only
what the caller needed. M

Steven Popkes has been a software engineer for twenty years, most
recently as a co~ultant for ESI Technology Corporation in Nat
ick, Massachusetts. He has worked extensively in M, C + + and
EsiObjects. He is now an employee at Concept 5, in Burlington,
helping develop a COREA-compliant security system. He can be
reached at spopkes@concept5.com.

KB SQL Version 4.01 -
The upcoming release of KB_SQL contains
several exciting new features, including:

• The proven SQUODBC solution for
all M types, including Cache

• Windows Query and Reporting
Environment

• Support for long TEXT data type
• Improved query optimization for

better performance
• Online documentation
• And more!

Want to know more?
www.kbsystems.com

KB Systems, Inc.
Voice (703) 318-0405

(I 1999 KB Systems, Inc.
All products are registered trademarks

of their respective companies.

Strategies & Solutions Conference
September 27-29, 1999 San Diego

Strategies & Solutions Info: Fees, Program, Solutions Center, Laptop Demos

Registration ,Fees: We're delighted to announce
that this year's conference fees are greatly
reduced, and there will be no separate fees for
tutorials! Online registration will be available by
late June.
Registration by August 27: $495 members, $560
nonmembers.
Registration after August 27: $595 members,
$660 nonmembers.

Special Discounts:
Distinguished Member Employees: Register 5
employees, pay for the first 3 and send 2 free!
Organizational Member Employees: Register 3
employees, pay for the first 2 and send 1 free!

Solutions Center Fees: Tabletop Displays, two
days, $500 for MTA Distinguished Members; $600
for MTA Organizational Members; $800 for all others.

http://www.mtechnology.org

Program: The S&S program focuses on the new
skills and related technologies needed to use M
technologies to best advantage. It includes M and
the Web, Linux, case studies on new approaches to
legacy systems, and much more.

Solutions Center: As the central S&S hub, the
Solutions Center will offer vendor table-top dis
plays, refreshments during breaks, a place to net
work with colleagues and new acquaintances.

Laptop Demos: What solutions have your found
lately? Contact MTA if you'd like to offer a brief
laptop demo of the solutions that are working for
you. Check out the MTA Website for the full con
ference program in late June. We're looking for
ward to seeing you in San Diego!

M COMPUTING 15

