
FEATURE ARTICLE

Browser Developm.ent Tool @net

by Ditmar Tybussek

Introducing @net-This in-house application creation
tool won second prize in the InterSystems Cache Innova
tor Awards. Bewidata does not plan to tum it into a com
mercial product, but will allow others to use the tool. It
particularly needs help text in English. That said, this is an
exciting tool that facilitates development while using a
browser inte,face to build applications with a browser pre
sentation layer. Much of the text of this article was adapt
ed from the submission for the competition. Having seen
the application in action, I agree wholeheartedly with the
judges at IDC!-Editor.

What is @net?

Bewidata developed @net for use as an internal devel
opment tool. It uses Cache and Weblink capabilities to
connect an M database to a browser front end. The
browser is used as the front end for both programming
and user functions. This approach makes it possible for
programmers to create applications while online any
where in the world. The application can be executed
instantly, without need of compilation-also world
wide.

The browser front end of @net creates M applications.
It is designed to be multicultural and multilingual and
to produce either simple or complex network applica
tions which are data-intensive, object oriented, and
dynamic. The programming approach facilitated by
@net works well both for providing a new front end for
traditional applications and for newer applications
such as e-commerce.

Why Use Browser Technology?

The Internet and local intranets are being used today
by an ever increasing number of companies and private
users. It has been recognized that internet technology is
less expensive than most earlier types of online con-

32 M COMPUTING

nections. Since the internet involves a world-wide net
work, the importance of international applications is
constantly increasing. Large, international software
suppliers can benefit, for example, when their applica
tions can be implemented in various languages by
numerous users, all of whom have widely diversified
tasks in mind. Just from observing the current develop
ment in the European marketplace, the advantages a
multilingual and multicultural application can provide
become readily apparent. Users in different countries
do not need to settle on a common language. Each user
works in the language of his or her choice. Users can
feel at home with programs much more quickly if they
can use the language, methods of writing currency
amounts, the date and the time formats with which they
are already familiar.

@net enables flexible distribution of resources. It
might be reasonable to have your server in Canada,
your product development department in the USA,
data entry in India and the statistical analysis done by a
company in Germany-all online, in multiple lan
guages.

It may be that the statistics department needs a new
data field. An email to the developer in the United
States is all it takes. This change request can be carried
out there, with the help of @net. When the data entry
people in India call up that HTML page, this new data
field is automatically and immediately activated. Auto
matically generated help functions within @net make it
easy for all users to quickly benefit from new features.

Intranet programming by systems suppliers for third
parties is also simplified with @net. In addition to the
support functions offered by inheritance during the
development process, objects developed using @net
provide the ability to distribute systems or sub-systems
easily. This makes it possible to create, distribute, and
support complex applications.

July 1999

Working with @net saves time, and finding your way
through the program is quite easy. All of the menu fea
tures can be easily understood and detailed online help
is also available. That makes @net not only useful for
private users without any previous programming expe
rience, but also for small, mid-sized or large software
producers with complex requirements.

Those using browser technology for HTML documents
are also most likely using other products that under
stand this language as well, like Microsoft Word, Excel,
etc. The contents of a list generated with @net can be
easily loaded into other programs (Excel, for example)
for continued modifications. @net's menu items can be
linked not only to other @net applications, but to other
applications (* .exe), other URI.:s or to a static, local
HTML page which was created with FrontPage.

More and more companies want to sell their products
via the internet. This is also a very interesting applica
tion for @net. When an internet shopping page has
been created with FrontPage or a similar program, then
@net can take over the administration of the data used
with that site. That means that all of the activity of the
shop-orders, order confirmations, waybills, invoices,
stock administration and stock planning-can be han
dled by @net.

How Does @net Work?

@net creates dynamic HTML pages using Cache func
tionality in connection with WebLink. The entire pro
gram sequence is controlled by single events on the
page; for example, the selection of the buttons save,
new, erase, open, next data set, branch to another pro
gram / form / link, etc.

An application is created by maneuvering through the
individual pages and , as an integral part of that navi
gation, selecting specific methods, invoking related
functions and defining necessary parameters. This
process does not result in the compilation of complet
ed HTML pages. When these steps are completed and
the program is executed, all of the values are analyzed
and, based on user and module information (autho
rization, language, culture, color and form), new
dynamic HTML pages are created.

http://www.mtechnology.org

How are @net and the @net Applications
Organized?

Since @net makes use of the object model, @net
"thinks" of every HTML page as an object. Any combi
nation of numerous attributes, methods or even other
objects can be assigned to this object. These attributes
can be very simple, like colors, shapes, frames or but
tons, or they can be much more complex, like database
objects. If an application draws upon a database or a
new database is going to be created, @net automatical
ly hands down these attributes to the application. The
same thing happens, for example, with layout tem
plates, which can be inherited from the client by the
user, then by the application, then by the form, and
then by the data field.

What Does the Object Structure of an @net
HTML Application Look Like?

Here is an overview of several objects supplied with
@net:

-> User-Object
-> General Characteristics (Name/ Password

/ Information)
-> Language Traits
-> Cultural Traits
-> Layout Parameters
-> Accessibility Parameters
-> Company Affiliation
-> Module Characteristics
-> Connection Parameters (email Account,

IP-No., Server)

-> Menu-Object
-> Start Characteristics (Form / List / URL/

.exe I ...)
-> Language Traits
-> Layout Parameters
-> Module Characteristics
-> Accessibility Parameters

-> Form-Object
-> Layout Parameters

-> Frame Characteristics (Target Names)
-> Colors (Background Images, Background

Music ...)
-> Page Characteristics (Colors, Text,

Forms, Images)

M COMPUTING 33

-> General Layout (passed down from the
clients' characteristics)

-> Form Type Methods
-> Menu Methods
-> Standard Form Methods (Individual

Fields)
-> Grid Form Methods (Tabular Form)
-> Methods for Creating Lists
-> Manual Form Methods

-> Characteristics for Embedded Objects
-> Module Characteristics
-> Accessibility Parameters
-> Data Editing Characteristics
-> System Parameters
-> Database Characteristics

-> Primary Key Characteristics
-> Layout Characteristics
-> Field Characteristics (Names/ Field

length/ Types/ ...)
-> Relational Characteristics
-> Index Characteristics

-> Language Characteristics
-> Cultural Characteristics

-> Data Field Characteristics
-> Layout Characteristics
-> Methods of Data Entry (Date, Text,

Document, Password, Currency, num
bers, Files, Check Boxes, ...)
-> Relational Characteristics
-> Index Characteristics

-> Language Characteristics
-> Cultural Characteristics

-> Methods and Characteristics of Data
Storage

-> Language Characteristics
-> Lock Characteristics
-> Accessibility Parameters
-> Index Characteristics and Methods
-> Data Field Characteristics

-> Methods of Data Entry (Date, Text,
Document, Password, Currency,
Numbers, Files, Check Boxes, ...)

-> Relational Characteristics
-> Index Characteristics

-> Form Field Characteristics
-> Layout Characteristics
-> Field Validation Methods

-> Cache Routines (Checking the Data
Entry Filed)

-> JavaScript (Checking the Data Entry
Filed)

-> VBScript (Checking the Data Entry
Filed)

34 M COMPUTING

-> Data Entry Rules
-> User-based
-> Application-based

-> Methods of Data Entry (Selection, Multi-
Selection, Radio button)

-> Standard Button Characteristics (save,
open, new, delete, help, next.

-> Save Characteristics =
-> JavaScript
-> VBScript
-> Sub-form Callup Methods
-> FrontPage (URL)
-> External Characteristics (.exe)

-> Read Characteristics
-> Erase Characteristics
-> Help Characteristics

-> Language-dependent Help
-> Search-Button Characteristics

-> Search and Selection Methods
-> Display Characteristics
-> Search Results Transfer Characteristics
-> Characteristics for Creating Sums

-> Button Characteristics (Manual Button)
-> Language Characteristics
-> Distribution Methods

-> JavaScript
-> VBScript
-> Sub-form Callup Methods
-> FrontPage (URL)
-> External Characteristi'cs (.exe)

-> Button Layout Characteristics
-> Company Characteristics

-> Modules
-> List Generator Characteristics

-> Page Layout Characteristics
-> List Format Characteristics (<pre>for

matted,<Table> or XML)
-> Link-Options
-> Database Characteristics

-> Primary Key Characteristics
-> Field Selection Characteristics

(single/ from-to/ combination)
-> Field Layout Characteristics
-> Relational Characteristics

-> Data Field Characteristics
-> Field Selection Characteristics
-> Field Layout Characteristics
-> Relational Characteristics

-> Testing Characteristics
-> Cache Routines
-> JavaScript
-> VBScript

July 1999

All of the applications developed using @net are auto
matically:

Object Oriented: The required functionality was only
achievable with an object model. Layout characteristics
could be passed along ideally using this method. Object
orientation has other advantages, as well, such as the
output of Cache ObjectScripts, which allow data and
data definitions in existing Cache applications to be
passed along to other applications.

Multi-Lingual: The entire tool is multilingual, as are all
of the applications which are created with it. Transla
tions can be carried out either manually or automati
cally. As the applications are made, a translation tool
scans the application for incomplete translations and
suggests a suitable text, which can then be changed and
saved. The translation includes headers, database
names, menuS;'\help text, status text, parameters, page
tags and buttons. All language-dependent objects pos
sess a language characteristic which is activated as soon
as @net recognizes the language preference of the
user.

Multi-Cultural: As with language recogmt10n, some
fields also have characteristics relating to culture, for
example, fields with date, time and amount data. This
feature becomes active as soon as @net recognizes the
cultural preference of the user. The number "one
thousand," for example, can appear in various formats:
English "1,000.00"; German "1.000,00"; Swiss
"1'000,00"; Portuguese "1,000$00". etc. Dates and
times can also be portrayed in the user's culture, for
example, American "04/02/1999" or German
"02.04.1999" and English "5 PM" or German "17:00".

Multi-Dimensional: @net makes it possible to join
complex applications and to program distribution
methods to other forms which may be multidimension
ally connected. This also applies to URI.:s and * .exe
applications (for example; Word, Fax, email).

Dynamic: All parts of the application (menus, forms,
lists, even the tool itself) are joined with the form defi
nitions, layout parameters, data definitions, data field
definitions, button descriptions, search parameters,
user language, user access security level, the JavaScript
NBScript, the object collections (save, open, delete,
new, next record, prior record) only after Cache has
been activated. The result is a dynamic HTML docu-

http://www.mtechnology.org

ment with embedded JavaScriptNBScript. Testing of
the fields is carried out by both J avaScriptNBScript as
well as the Cache routines.

User-friendly: Aside from the advantages of a GUI, all
fields for entry have been setup to support help text.
Help text can be setup to contain both images and
videos. It is possible for the user, if he or she so desires,
to print out the entire operating instructions. Individ
ual sections of instructions can be selected and viewed
on the monitor. This user friendly approach extends to
programmers as well. A multitude of help texts and
functions are also available for programmers. @net can
automatically create forms and lists, for example,
depending on previously defined parameters and rela
tionships, and then suggest the most appropriate type
of data entry-check boxes, radio buttons or selection
fields. Certain kinds of entry forms are automatically
recognized by@net (for example, email addresses) and
an appropriate button which will carry out the desired
function is created automatically.

Some of the basic elements of @net include a list of
complete applications and help programs, for example:
automatic email and fax systems, downloading, embed
ded objects, group appointment calendars, date import
and export tools, "Pin Board," etc.

Multi-user: Many users often need to have access to a
database simultaneously, but the program job is actual
ly terminated after the page is sent. A new kind of data
locking system was needed for this kind of program
ming. The available locking mechanism (L + and L -)
could no longer be used because they are process spe
cific. The new mechanism can be individually adjusted
for each file and this adjustment receives a limited time
slot. The only person authorized to modify a data set is
the owner of that set. That means that as soon as a data
set is opened for viewing it is automatically locked.
After the locking period is over, the next user can
access the data set. The person who locked the set orig
inally needs only to change focus from the field in ques
tion to cause the data set to be unlocked and available
for the next user.

Capable of handing multiple companies in one system:
An unlimited number of independent companies can
be registered within an @net application. While utiliz
ing one global, the company identifier becomes the first
subscript level of the globals in the system. Each user is
registered only for the company for which he or she -M COMPUTING 35

works. This makes it possible for an unlimited number
of companies and users to access a name space in a
company's database, all simultaneously and without
disturbing one another.

Secure: After a user successfully logs in with his user
name and password, a unique user number is assigned
by @net. This number is embedded into the dynamic
page being worked on and the connection is validated
using that number. When the connection is closed, the
number is erased and is therefore no longer valid. A
different user is thus prevented from retrieving infor-
mation by simply hitting the "back" button. M

Ditmar Tybussek is Executive Manager, BEW/DATA
Untemehmensberatung und EDV-Service GmbH fFCr den
Deutschen Einzelhande~ Erthalstrasse 1, D-55003 Mainz, Ger
many

Report from the Inter Systems
Worldwide Developers

Conference

by Ka,te Schell

The InterSystems Developer's conference was held in
Orlando May 2-5, 1999. Others can probably offer hard
statistical evidence, but the number of attendees from
around the world definitely marked it as a major event.
I met attendees from Japan, China, Bulgaria, Spain,
Germany, and the Dominican Republic, as well as peo
ple from across the U.S. and Canada.

I'll be the first to admit that I attended for the two
hands-on sessions, known as "academies": The
Advanced Object Academy, given by Joe Gallant, and
the Web Academy by Rob Tweed. Both were worth
while. The instructors had excellent grasp of the mater
ial, and the examples were good. The number of sup-

36 M COMPUTING

porting staff available to help out if you ran into diffi
culties was impressive. The logistics of setting up the
number of PCs needed for the session were handled
well.

One of the logistical coups this year was the arrange
ment of meals in a separate pavilion, away from the
restaurants full of overtired children. This meant that it
was possible to converse with the other people at the
table. Of course, while discussing meals and program
mers, it is important to say that the food was both good
and plentiful.

Outside of the academies, InterSystems' staff discussed
a number of topics ranging from support to product
futures.

On Wednesday morning, InterSystems had John Gantz
of IDC in to discuss "Survival Tactics for the new Inter
net Economy"; you'll have to catch his talk next time to
find out why he considers church steeples critical to the
growth of new technology. Since IDC did the judging
for the Cache Innovator Awards, Mr. Gantz an
nounced the winners. There were 31 applicants. Three
prizes were awarded:

First Place:
G. Pierce Wood Hospital

Second Place: \-
Bewidata (See article on "Browser Tool @net"
in this issue.)

Third Place:
Credit Information Center for The Americas

All told, the meeting was a good value for the money.
Although we stayed at the conference hotel, there were
several less expensive hotels available in the area. I
admit that I'm tired of the Orlando location, but if it is
to remain there, the arrangements made this year made
it much more tolerable.

Hats off to the organizers and the presenters of this
meeting for a job well done!

July 1999

