
FEATURE ARTICLE

MWAPI: A New Face for M

by James Hay

Portability

Although this particular detail has not
been mentioned often in the press
lately, there is a M[UMPS]-related
standard for dealing with windows.
When this standard was established
about six years ago, it was intended to
approach window programming "from
a higher level perspective," so that
programs could use the same applica
tion-level code, regardless of the actu
al windowing platform on which the
programs were to be executed. In
those days, the popular platforms were
Apple Macintosh TM and X-Window™
and Microsoft Windows 3.1 ™, and for
each of these platforms, at least one
vendor demonstrated an implementa
tion.

At the time, Microsoft Wmdows 3.1
was not really seen as a serious con
tender in the world of windows. As the
world changed, the Microsoft products
have been touted as the "winner" in
the desk-top arena. Now that Linux
and "Open Source" environmerits are
gaining popularity, the world is chang
ing again, and Microsoft is no longer
seen as the "sole target environment."

As a result, we will probably see a
renewed interest in the MWAPI stan
dard (ANSI/MDC Xll.6-1995), as an
increasing number of software authors
will want to write code that is portable
between Microsoft's windowing envi
ronments and the X-Window™ envi
ronments in the Linux-based world.

-Edde Moel

8 M COMPUTING

T
he MUMPS Windowing Applications Programmer Interface
(MWAPI) extends the M language into the area of windows devel
opment. Programming in a graphical environment requires

change from the methodologies used in the traditional character cell
technology of standard M. This article takes a look at the similarities and
differences the M programmer will encounter developing applications
with the MWAPI.

The MWAPI specification adds three new Structured System Variable
Names (SSVNs), a few string functions and a couple of special variables.
The new SSVNs "'$Display, "'$Window and "'$Event hold the defini
tions of GUI entities used in the MWAPI system. The string functions
and special variables make working with MWAPI entities, structures,
and graphical environments easier for the programmer.

Developers of MWAPI applications enjoy the same high-level platform
independent development environment and portability of source code
as programmers of standard M applications. The high-level approach
removes the developer from the intricacies of any particu1ar windowing
environment while maintaining the look-and-feel characteristics deter
mined by the host where the application will be used. A common set of
syntax and methods is abstracted from the operating windowing envi
ronment so MWAPI-created GUY s can take on these unique character
istics, from disparate windowing environments, with no change to
source code. The abstraction layer is transparent to the user - a behind
the-scenes approach. This provision permits the developer to focus
attention where it is most appropriate - the application.

The most advantageous use of the MWAPI is the development of GUI
applications, although support is provided for character cell front ends.
Legacy applications are supported through a terminal emulation win
dow, MTERM, similar to a "DOS Box." An MTERM window is consid
ered as a device where input and output operations can be redirected.
This device definition permits unaltered _legacy applications to be used
in a graphical windowing environment.

Windows, gadgets, menus, and timers make up MWAPI GUI interfaces,
and are each defined by a set of attributes. The MWAPI defines a list of
keywords to describe the attributes that define the makeup of the win
dows, gadgets, menus and timers. Quality or quantity is assigned to
attributes nodes to define properties of GUI components. For example

May 1999

the attribute BCOLOR describes a background color
attribute, while a value of 65545,0,49150 defines the
color quality. A UNITS value of 10 assigns 10 units in
the unit-of-measurement. Units of measurement can
be: character, pixel, point, relative and implementa
tion-specific.

Windows and elements are created by simply assign
ing values to their attributes in the ,,..,_ $Window SSVN.
Example One shows the syntax for assigning a value to
a window and Example Two provides the same for one
of its gadgets.

Example One

A$W(window name, attribute keyword)=value

Example 1\vo

A$W(window name,"G",gadget name,attribute)=
valui

The same commands used to assign values to variables in
standard M applications are used to assign values to
MWAPI-defined SSVNs. The creation of MWAPI enti
ties and elements is a side effect of the assignment of val
ues to their attributes. Using the syntax shown in Exam
ple one as the argument to a Set command, a window
named "MAIN" with the title "ACCOUNTS" is created
by the assignment shown in Example Three.

Example Three

SET A$W("MAIN","TITLE")="ACCOUNTS"

The set command works for creating windows and for
modifying attribute values of entities and elements
already created. The size, position and type of gadget
must be defined before their attribute keywords and val
ues can be assigned to the ,,..,_ $Window SSVN. The
Merge command must be used to create a gadget. The
Merge command assigns the array nodes and values of
the attribute keywords into the ,,..,_ Window SSVN to cre
ate the gadget. Example Four creates a scroll gadget with
the name "SCROLLl" 20 by 25 units in the unit of mea
surement at position 80,40 in window "MAIN."

Example Four

SET W("MAIN", "G", "SCROLLl", "TYPE")="SCROLL"

SET W("MAIN", "G", "SCROLLl", "POS") =" 80, 40"

SET W("MAIN", "G", "SCROLLl", "SIZE")="20, 25"

MERGE A$W=W

http://www.mtechnology.org

Creating an element can have the effect of creating both
its parent window and the abstraction layer between the
interface and the windowing environment. For example:
If the window in Example Four ("MAIN") is undefined
when the assignment is made to create an element for it
(a menu or timer can be used instead of the gadget
assignment), the window will be created. If the abstrac
tion layer is not defined, it too will be created. This prop
erty of MWAPI development provides the programmer
with the means to rapidly create an interface.

Default values are implicitly assigned to define the attrib
utes inherent in a window and element that were not
defined through explicit statements. The entities and ele
ments created by Examples Three and Four do not
include statements to define all the inherent characteris
tics of each. Default values fill in the gaps to define attrib
utes not stated. Default values are passed down from par
ent to child, as is found in a family lineage. Children
share characteristics with their parents, and this is true
with an MWAPI GUI. Each M Process has its own win
dows interface, which has the tree structure shown in
Illustration 1.

Operating System Environment

Logical Displays

Windows

!Gadgets I Menus Timers Windows

M Process

Illustration 1

The illustration shows that within an M process logical
displays are descended from the windowing platform
where the interface is operating. Multiple logical displays
can exist to define abstraction layers for multiple and sep
arate interface environments. Multiple windows can
descend from each logical display, and each window can
have as their children numerous gadgets, menus, timers
and even other windows. The operating system environ
ment is placed outside the interface hierarchy to show

M COMPUTING 9

SCROLL ; this tag processes SELECT events for gadget SCROLLl
DO WINELMT ; get event information
SET X=A$W("MAIN","G",ELEMENT,"VALUE") ; get the gadget's value
SET A$W("MAIN","G","NUMBER","VALUE")=X ; assign the value to gadget NUMBER
QUIT

WINELMT ; get characteristics of an event
SET SEQUENCE=A$E("SEQUENCE") ; get the sequence of the event
SET WINDOW=A $E ("WINDOW") ; get the window's name
SET X=$G(A$E("ELEMENT"))
SET ELTYPE=$P(X,",",1) ; Get the element's type.
SET ELEMENT=$P(X,",",2) ; Get the element's name.
SET TYPE=A$E("TYPE") ; get the event type
QUIT

Example 6

that it may be omitted from the functioning of an
MWAPI application.

The server applications to an MWAPI interface client
"hand shake" with each other through an event queue.
The high level design of the MWAPI uses the underlying
windowing platform's event queue while maintaining the
platform independence of the source code. The MWAPI
interprets events that transpire in windows and elements
as a characteristic of the window or element. The same
methods used previously to define windows and ele
ments are used to define actions when an event occurs in
a window or element. In the ,A. $Window SSVN, the level
below the attribute name, EVENT, is a keyword that
describes the event. The value assigned to this level is the
argument to a Do command where processing is direct
ed on the server application, when the event occurs.
Since gadget SCROLLl already exists, the Set command

l:ILE ACCOUNTS .!:!ELP

AMOUNT

11 00 D CHECKING

DATE DESCRIPTION

RECONCILED LIST OF ACCOUNTS

◊YES

AUTO ,f t ·. ~~- "I CHECKING I=
COMMUTING
HOME IMPROVEMENl

®NO
HOUSEHOLD

I CA,N.~~ I MORTGAGE -SAVINGS +!

Illustration 2 Microsoft Windows 3.1

10 M COMPUTING

can be used to add the attribute to it. Example Five
shows the assignment of an event node for the gadget
created in Example Four.

Example Five

SET A$W("MAIN","G","SCROLL1","EVENT",
"SELECT")="SCROLLACHECKING"

If the processing logic called from an event node in the
,A. Window SSVN needs to handle an event that occurred
for the calling entity, it will need to reference the event
object. The event object is normally redefined for each
MWAPI event where an event node exi51:s with an event
keyword that describes the event. The event object is a
list of event information attributes and values assigned to
the ,A. Event SSVN. The design of the application used

®ACCOUNTS l!lli!Ei

' RECONCILED

AUTO
r YES CHECKING

COMMUTING
HOME IMPROVEMEN"

r. NO HOUSEHOLD
MORTGAGE

Illustration 3 Microsoft Windows NT

May 1999

EN
;Other windows may be in use, so kill only those used by this. application.

NEW W,MWDATE,MWMTH,MWDAY,MWYR,MWNUM,MWTIME,MWFFACE,MWFSIZE,MWFSTYLE
NEW MWUNITS,X,Y
KILL "$W("MAIN")
SET W("MAIN","TITLE")="ACCOUNTS"
SET W("MAIN","POS")="40,40"
SET W("MAIN","SIZE")="500,350"
SET W("MAIN","MENUBAR")="MENUBAR"
SET W("MAIN","NEXTG")="NUMBER"
SET W("MAIN", "DEFBUTTON")="OK"
SET W("MAIN","EVENT","CLOSE")="CLOSE"CHECKING"
; menus
SET W("MAIN","M","MENUBAR","CHOICE",l)="&FILE"
SET W("MAIN","M","MENUBAR","CHOICE",l, 11 SUBMENU 11)= 11 FILE"
SET W("MAIN","M","MENUBAR","CHOICE",2)="&ACCOUNTS"
SET W("MAIN","M","MENUBAR","CHOICE",2,"SUBMENU")="ACCOUNTS"
SET W("MAIN","M","MENUBAR","CHOICE",3)="&HELP"
SET W("MAIN","M","MENUBAR","CHOICE",3,"EVENT","SELECT")=

"HELP"CHECKING"
; accounts menu
SET W("MAIN","M","ACCOUNTS","CHOICE",l)="&CHECKING"
SET W("MAIN","M","ACCOUNTS","CHOICE",1,"EVENT","SELECT")=

"SEL"CHECK~NG"
SET W("MAIN","M","ACCOUNTS","CHOICE",2)="&SAVINGS"
SET W("MAIN","M","ACCOUNTS","CHOICE",2,"EVENT","SELECT")=

"SEL"CHECKING"
; file menu
SET W("MAIN", "M", "FILE", "CHOICE", l)="&NEW"
SET W("MAIN", "M", "FILE", "CHOICE", 1, "EVENT", "SELECT")=
"NEW"CHECKING"
SET W("MAIN", "M", "FILE", "CHOICE", 1, "SEPARATOR")=""
SET W("MAIN", "M", "FILE", "CHOICE", 2) =" &PRINT"
SET W("MAIN","M","FILE","CHOICE",2,"EVENT","SELECT")=

"PRINT"CHECKING"
SET W("MAIN", "M", "FILE", "CHOICE" ,2, "ACTIVE")=0
SET W("MAIN", "M", "FILE", "CHOICE" ,2, "SEPARATOR")=""
SET W("MAIN", "M", "FILE", "CHOICE", 3)="&SAVE"
SET W("MAIN","M","FILE","CHOICE",3,"EVENT","SELECT")=

"FILE"CHECKING"
SET W("MAIN","M","FILE","CHOICE",4)="SAVE &AS"
SET W("MAIN", "M", "FILE", "CHOICE", 4, "ACTIVE")=0
SET W("MAIN", "M", "FILE", "CHOICE" ,4, "SEPARATOR")=""
SET W("MAIN", "M", "FILE", "CHOICE", 5)="E&XIT"
SET W("MAIN", "M", "FILE", "CHOICE" ,5, "EVENT", "SELECT")=

"CLOSE"CHECKING"
; gadgets
; check number
SET W("MAIN","G","NUMBER","ACTIVE")=0
SET W("MAIN","G","NUMBER","NEXTG")="SCROLLl
SET W("MAIN", "G", "NUMBER", "TYPE")="TEXT"
SET W("MAIN", "G", "NUMBER", "POS")="30 ,40"
SET W("MAIN", "G", "NUMBER", "SIZE")=" 50, 25"
SET W("MAIN","G","NUMBER","BCOLOR")="65535,65535,0"
SET W("MAIN","G","NUMBER","TITLE")="CHECK"
; set the initial value with the last check number used+ 1
SET MWNUM=$P($G("CHECK(0)),""",2)+1

Example Seven

http://www.mtechnology.org M COMPUTING 11

SET W("MAIN", "G", "NUMBER", "VALUE")=MWNUM
; scroll for check number
SET W("MAIN","G","SCROLLl","TYPE")="SCROLL"
SET W("MAIN", "G", "SCROLLl", "POS") =" 80, 40"
SET W("MAIN","G","SCROLL1","SIZE")="20,25"
SET W("MAIN","G","SCROLLl","SCROLLDIR")="V"
SET W("MAIN","G","SCROLLl","SCROLLRANGE")="l,10000"
SET W("MAIN","G","SCROLLl","NEXTG")="AMOUNT"
SET W("MAIN", "G", "SCROLLl", "VALUE")=MWNUM
SET W("MAIN","G","SCROLLl","EVENT","SELECT")="SCROLLACHECKING"
; check amount
SET W("MAIN", "G", "AMOUNT", "POS") =" 185, 40"
SET W("MAIN", "G", "AMOUNT", "SIZE")="50,25"
SET W("MAIN", "G", "AMOUNT", "TYPE")="TEXT"
SET W("MAIN","G","AMOUNT","TITLE")="AMOUNT"
SET W("MAIN","G","AMOUNT","NEXTG")="SCROLL2"
; description of the transaction
SET W("MAIN", "G", "DESCRIPTION", "POS")="185, 120"
SET W("MAIN", "G", "DESCRIPTION", "SIZE")="200,25"
SET W("MAIN","G","DESCRIPTION","TYPE")="TEXT"
SET W("MAIN","G","DESCRIPTION","TITLE")="DESCRIPTION"
SET W("MAIN","G","DESCRIPTION","NEXTG")="ACCOUNTS
; date - month
SET W("MAIN", "G", "MONTH", "TYPE")="TEXT"
SET W("MAIN", "G", "MONTH", "POS") =" 30,120"
SET W("MAIN", "G", "MONTH", "SIZE")=" 30, 25"
SET W("MAIN", "G", "MONTH", "ACTIVE")=0
; date - day
SET W("MAIN", "G", "DAY", "TYPE")="TEXT"
SET W("MAIN", "G", "DAY", "POS")="60, 120"
SET W("MAIN", "G", "DAY", "SIZE")="30,25"
SET W("MAIN", "G", "DAY", "ACTIVE")=0
; date - year
SET W("MAIN", "G", "YEAR", "TYPE")="TEXT"
SET W("MAIN", "G", "YEAR", "POS") =" 90,120"
SET W("MAIN", "G", "YEAR", "SIZE")="30,25"
SET W("MAIN","G","YEAR","ACTIVE")=0
; values for MONTH, DAY and YEAR
SET MWDATE=$$MMDDYY($H)
SET MWMTH=$P(MWDATE,"/",1),MWDAY=$P(MWDATE,"/",2)
SET MWYR=$P(MWDATE,"/",3)
SET W("MAIN", "G", "MONTH", "VALUE")=MWMTH
SET W("MAIN", "G", "DAY", "VALUE")=MWDAY
SET W("MAIN", "G", "YEAR", "VALUE")=MWYR
; scroll for date
SET W("MAIN", "G", "SCROLL2", "TYPE")="SCROLL"
SET W("MAIN", "G", "SCROLL2", "POS")=" 120,120"
SET W("MAIN", "G", "SCROLL2", "SIZE")="20,25"
SET W("MAIN","G","SCROLL2","SCROLLDIR")="V"
SET W("MAIN","G","SCROLL2","SCROLLRANGE")="-30,30"
SET W("MAIN","G","SCROLL2","NEXTG")="DESCRIPTION"
SET W("MAIN","G","SCROLL2","EVENT","SELECT")="SCROLLACHECKING"
; reconciled group
SET W("MAIN","G","RECONCILED","TYPE")="RADIO"
SET W("MAIN", "G", "RECONCILED", "POS") =" 30,200"
SET W("MAIN","G","RECONCILED","SIZE")="120,110"
SET W("MAIN", "G", "RECONCILED", _"TITLE")="RECONCILED"

Example Seven

12 M COMPUTING May 1999

SET W("MAIN","G","RECONCILED","CHOICE",l)="YES"
SET W("MAIN","G","RECONCILED","CHOICE",2)="NO"
SET W("MAIN","G","RECONCILED","NEXTG")="OK"
; list of accounts
DO ACCOUNTS ; get choices in alphabetical order
SET W("MAIN","G","ACCOUNTS","TYPE")="LIST"
SET W("MAIN", "G", "ACCOUNTS", "POS") =" 185,200"
SET W("MAIN", "G", "ACCOUNTS", "SIZE")="165, 115"
SET W("MAIN","G","ACCOUNTS","TITLE")="LIST OF ACCOUNTS"
SET W("MAIN","G","ACCOUNTS","NEXTG")="RECONCILED"
; ok button
SET W("MAIN","G","OK","TYPE")="BUTTON"
SET W ("MAIN" , "G" , "OK" , "POS") =" 380,200"
SET W("MAIN", "G", "OK", "SIZE")="80,40"
SET W("MAIN", "G", "OK", "TITLE")="OK"
SET W("MAIN", "G", "OK", "NEXTG")="CANCEL"
SET W("MAIN","G","OK","EVENT","SELECT")="FILE"CHECKING"
; cancel button
SET W("MAIN","G","CANCEL","TYPE")="BUTTON"
SET W ("MAIN", "G", "CANCEL", "POS")=" 380,270"
SET W("MAIN", "G", "CANCEL", "SIZE")="80, 40"
SET W("MAIN","G","CANCEL","TITLE")="CANCEL"
SET W("MAIN","G","CANCEL","EVENT","SELECT")="RESTORE"CHECKING"
SET W("MA~","EVENT","CLICK")="POPUP"CHECKING"
SET W("MAIN","EVENT","CLICK","FILTERIN")="PB3"

TIMER ; set the inactivity timer - close if no activity
SET MWTIME=300
SET W("MAIN", "T", "TIMER", "INTERVAL")=MWTIME
SET W("MAIN","T","TIMER","EVENT","TIMER")="CHKACT"CHECKING"
; account notification label
SET W("MAIN", "G", "NOTE", "TYPE")="LABEL"
SET W ("MAIN" , "G" , "NOTE" , "POS") =" 3 0 0 , 4 0 "
SET W("MAIN", "G", "NOTE", "SIZE")="120,20"
SET W("MAIN","G","NOTE","TITLE")="CHECKING"
SET W ("MAIN" , "G" , "NOTE" , "FCOLOR") =" 6 5 5 3 5 , 0 , 0 "
MERGE "$W("MAIN")=W("MAIN") ; create window main
; date - label
SET W("MAI.N", "G", "DATE", "TYPE")="LABEL"
SET W("MAIN","G","DATE","POS")="30,100"
; get details from the abstraction layer
SET MWFFACE="$DI($PD,"FFACE")
SET MWFSTYLE="$DI($PD,"FSTYLE")
SET MWFSIZE="$DI($PD,"FSIZE")
SET MWUNITS="$DI($PD,"UNITS")
SET X=$WTWIDTH("DATE",MWFFACE,MWFSIZE,MWFSTYLE,MWUNITS)
SET Y=+$WFONT(MWFFACE,MWFSIZE,MWFSTYLE,MWUNITS)
SET W("MAIN","G","DATE","SIZE")=X_","_Y ; area needed to display "DATE"
SET W("MAIN", "G", "DATE", "TITLE")="DATE"
MERGE "$W("MAIN","G","DATE")=W("MAIN","G","DATE") ; create gadget DATE
SET "$DI($PD,"FOCUS")="MAIN" ; set focus
ESTART 9000 ; 9000 seconds is the time-out for event processing
QUIT

MMDDYY(X) ; get month,day and year
SET %DN=X DO 400"%DO
QUIT %DN

http://www.mtechnology.org

Example Seven

M COMPUTING 13

for this article has each entry point from the event queue
call a common tag to reference the ,,..._ $Event SSVN for
details of the event. Example Six shows the tag called
from the event node in Example Five, and the tag called
to reference the event object.

After processing the event, control returns to the event
loop to await another triggered event. The method for
the detection and processing of events is referred to as,
"Call Back Processing". This form of event processing
can be imagined as a call to a routine after each READ
to process input from the READ.

Managing the functions of windows and elements is a
snap when using the MWAPI, since the operations of
many objects are automatic. For example: resizing a win
dow, word processing actions of text and document gad
gets, and the scrolling of a list in a list box occur without
the developer having to write code to support such
actions.

The Interface shown in Illustration Two demonstrates a
GUI created using the MWAPI in a Microsoft Windows
3.1 windowing environment. The interface shown in
Illustration three has the characteristics of an interface
seen when using Microsoft's Windows NT 4.0. The
source code was not altered for the port. All the defini
tions for the interface are assigned to a local array prior
to merging them into the ,,..._ Window SSVN. A global can
be created to keep a persistent interface definition where
all that is needed to create the GUI is Merge logic in the
server application. For the experienced M programmer,
changing from engineering applications that write to and
read from character cell windows to the development of
GUI applications requires minimal changes to already
familiar syntax. The skill set developed while working with
standard M applications can be transferred to MWAPI
development. The MWAPI merely builds upon the speci
fication for standard M to add the ability to create GUI
clients and a connection to their server applications. Only
a few SSVNs, special variables and string functions are
added to the language syntax for the MWAPI. Develop
ing with the MWAPI is a conceptual difference from char
acter cell programming, not a syntactical one.

You can learn more about how to use the MWAPI to engi
neer real world applications with a full explanation for the
code in Example Seven from Reference MWAPI. Reference
MWAPI is available from the MTA. See the publications
section of M computing, or visit the MTA web site at
http://www.mtechnology.org and click on publications.

Reference MWAPI details how an M programmer can eas
ily learn to develop robust window applications using the

14 M COMPUTING

MWAPI. Included are numerous tables, illustrations,
sample programs, images and discussions that demon
strate how high-quality graphical user interface applica
tions can be easily developed. It describes how applica
tions created through the host-independent development
environment can be ported to any windows platform with
out changes in source code while maintaining the native
look and feel, and the event processing methodology. It
examines the issues of portability and compact code, some
of the traits the MWAPI shares with the JAVA program
ming language, and which account for JAV A's popularity.

Reference MWAPI includes appendices designed for quick
working reference, and it is organized with the needs of a
developer in mind. The material is structured to serve as a
learning tool and as a resource for applications develop
ment. The integration of the MW API is divided into seven
chapters that focus on particular components of the sys
tem. The book is intended for the novice programmer as
well as the more experienced M programmer. Sample pro
grams walk the user through "how to" demonstrations of
windows development. Exercises are included at the end of
every chapter, and answers to the exercises are contained
in Appendix B. The last chapter brings all the components
together with a complete and detailed application. M

James Hay is a Senior Programmer/Analyst in Albuquerque, NM,
and author of the book Reference MWAPI He can be reached
by email at albqhay@gte.net.

Additional reading available from the M Technology
Association:

ANSI/MDC Xll.6-1996 American National Standard for
Information Systems - Programming Languages - M Win
dowing API, also published as ISO/IEC 1 5 8 5 2 : 1 9 9 9
Information Technology - Programming Languages - M
Windowing API

Gardner, Guy, "Peeking at the New M Windowing API",
M Computing, April 1993

Hay, James, Reference MWAPI, Boston, Digital Press,
1998

1rask, Gardner, "M Windowing API: Expansive Tool or
Expensive Toy?", M Computing, February 1994.

Trask, Gardner, "The M Windowing API: The Tools", M
Computing, April 1994.

May 1999

