
FOCUS ON FILEMAN

FileMan 22 and Indexes: Part 1

4 by Rick Marshall

Overview

The last column introduced FileMan version 22, but
due to the volume of material to cover could not do so
in depth. This column continues exploring this new ver
sion in more detail, starting with a focus on FileMan's
index capabilities, old and new.

What is an index?

A file's index'operates much like a book's. Just as with
out an index (or table of contents) you must search a
book from page to page looking for the information
you need, so without an index you must search a file
from record to record. In both cases, the index lets you
start with the value you're looking for and quickly iden
tify the page or record number where that data is
found.

Indexes are created and maintained by cross-refer
ences attached to specific data fields, so one of the
most important decisions a file designer must make is
which indexes to build. Like all good file design deci
sions, this should be based on 1) what the data repre
sents, and 2) how it will be used. This article touches
only briefly on these design questions, and focuses
mainly on the kinds of indexes you the file designer can
create.

Index Uses

Indexes can be used to sort entries by the values in one
or more of their fields, and to select entries with certain
data values. Since indexes store the field value in a sub
script, M built-in collation rules perform the sorting for
you. Selection, though, is more complex. Although you
frequently want to let your users pick any entry in a file
based on its field values, you may also choose to create
indexes that include only a subset of the file's entries, to
effectively hide the entries that do
not meet your criteria.

http://www.mtechnology.org

In either case, what the index does for you is store CPU
time. That is, it spends the CPU time required to per
form the computation (sorting or screening) as the data
is created and modified, instead of when the user is
ready to sort or select. An index does nothing for you
that could not be done more slowly at the time the user
is ready to sort or select entries.

Therefore, some of the crucial questions to ask when
choosing which indexes to create are:

1) What reports run regularly enough or are for users
powerful and impatient enough to warrant having
index support?

2) How do you want your users to be able to pick
entries in this file?

3) What kind of index support does your software need
to make decisions on the fly as it executes? And

4) How much disk space can you spare to speed up
these activities?

The answers to these questions are usually a pretty
good guide to which indexes you should create. As you
select each index to build, think through the answers to
the question that you'll have to answer when you actu
ally use FileMan to define the associated cross-refer
ences.

Index Structure

Not all cross-references build indexes. Some send bul
letins, trigger values into other fields, or perform other
activities, but this article shows you how to define cross
references that build indexes. Indexes share a common
structural pattern.

First, FileMan stores them in the same global array as

M COMPUTING 31

the data file they're derived from (but see Whole File
Indexes below for a variation on this theme).

After the subscripts shared in common with the file's
global root, the very next subscript is always the index's
name, stored as a string subscript.

Next comes one or more subscripts used to store data
values; these may be field values from the entries in the
file, or they may be based on those values, or they may
come from somewhere else entirely, but the general
case is a field value. More precisely, the subscripts
stored up to the first 30 characters of a field value (an
older M standard restricted subscript length in earlier
FileMan versions). With version 22 you can set this
limit where you like for each of your data subscripts in
each of your indexes.

After the data subscripts, the last subscripts in an index
node store record numbers (or IENs), pointers to the
entries in the file above that correspond to the data
subscripts; except for Whole File Indexes (see below),
most indexes have a single IEN subscript.

Finally, except for Mnemonic indexes (described
below) FileMan index nodes always equal the empty
string.

Here's an example familiar to those who work with the
VA Kernel, the B index on the Name field of the New
Person file. I've shown the file header, the relevant
node of the entry, and its corresponding index node:

AVA(200,0) = NEW PERSONA200IA42A22
AVA(200, 9, 0) =
MARSHALL,RICKATOADAxxxxxxxxxxxxxxxxxxA@AAA
lAAl
AVA(200,"B","MARSHALL,RICK",9) =

Indexes differ by the number of data and IEN sub
scripts, by the contents of the data subscripts, and by
the node value (Mnemonic indexes equal 1). These dif
ferences are due to the different types of indexes you
can create, and ea9h type of index follows a single pat-
tern. ·

Regular 'fype Indexes

Most FileMan indexes are type Regular, which up until
version 22 has meant the index has a single data sub
script, (except for Whole File indexes on subfiles) a sin-

32 M COMPUTING

gle IEN subscript, a value of the empty string, and an
index node for every entry in the file that has a value
for the cross-referenced field.

Version 22 extends this type to allow screening of
entries, so Regular indexes need not include all file
entries with values for the cross-referenced field. Ver
sion 22 also extends it to let you store a value derived
from the field value in the index, instead of the exact
field value itself. Version 22 also extends the Regular
type to let you define subscripts not necessarily derived
from any field in the cross-referenced file, to use any M
code you like to create a data subscript value. These
three changes will probably increase the percentage of
indexes that are Regular, since they remove the need
for some of the indexes out there created by M cross
references.

The B index of the New Person file shown above is a
Regular index.

Index Names

Every cross-reference must have a name, and every
index must have a name, and for all but M cross-refer
ences the names are the same (M cross-references can
build indexes with any name they like, or need not build
indexes at all. See below). By conventi~, the B index
of every file is a Regular index on the .01 field, and is
automatically created by FileMan when the file is cre
ated. Beyond that, two general rules apply based on
how you use the index and who you are.

Index names encode their use. Indexes that will be used
for lookup must have a name that collates after the let
ter "B", because that is where File Man looks for
lookup indexes. Those that will only be used for sorting
must have names that start with the letter 'W..' followed
by whatever you like.

Index names encode their origin. Indexes added to files
developed and maintained by someone else must be
namespaced. The reason for this is simple: the devel
opers can put indexes wherever they like on their own
files, so unless you're namespaced nothing prevents a
new index in their next release from overwriting yours.
This applies to 1) local indexes added to national files,
2) local indexes added to files developed and main
tained at some other site, and 3) national indexes
added to national files developed elsewhere.

May 1999

Index Numbers

This is the famous prompt that when you entered a ?
for help always responded NEVER MIND, JUST HIT
RETURN." Actually, this is worth minding, because
exactly the same guidelines for namespacing apply to
numberspacing. Index numbers are significant, affect
ing both exactly where the index is stored in the DD
and the order in which it is fired when the field
changes. In your own files, use whichever numbers you
like (usually, never mind and just hit return), but when
adding indexes to someone else's files be sure to use
your own numberspace.

Simple and Compound Indexes

Simple indexes have a single data subscript, which
makes them, well, simple to understand and use. Com
pound indexes are those with two or more data sub
scripts. Up uR{il version 22, none of FileMan's built-in
index types allowed compound indexes, only simple
ones, which led developers to use MUMPS cross-refer
ences to build their compound indexes. In fact, before
this new version FileMan was unable to use a com
pound index for selecting file entries, which meant you
could cause hard errors unless you stored your com
pound indexes among the sort-only indexes. Version
22, however, directly supports the creation of com
pound indexes for Regular and M types, so we expect
this too to increase how often you can use a Regular
type cross-reference to create your index.

Compound indexes require more thought on your part.
For one thing, they will have nodes only for file entries
that have nonempty values for ALL of the data sub
scripts, which means you must think twice to be sure
you know whether your index will have a node for every
entry. Another issue that deserves your consideration is
which order to store your data subscripts, since that
affects sorting, the order in which you must retrieve
data to match against the index, and how quickly each
data subscript cuts down your list of candidates when
being used for selection. As a rule of thumb, if you
don't care about the data subscript order, put the most
unique value in the first data subscript. Name is a good
choice; SSN even better; and Sex is a really bad choice
(only two choices, usually).

The first file to have one of FileMan version 22's new
compound indexes was the new Index file itself,

http://www.mtechnology.org

because identifying an index requires knowing both the
file and the index name. This is stored in the Index
file's BB index as follows (I've abbreviated the short
description):

ADD("IX",0) = INDEXA.11IA167A69
ADD("IX", .1101,0) = .llABBAThe uniqueness
index for ...

ARAARAIRAIA.llAAAAALS

ADD ("IX", "BB", .11, "BB", .1101)

Whole File Indexes

Cross-references on fields in a subfile can be used to
create indexes either just within the subfile under the
parent entry, or to create larger shared conglomerate
indexes containing subfile values from under all the
parent entries. A typical example of the latter is to cre
ate an index on the top-level file, though if you're sub
file is down more than one level you can create a
shared index at any of the levels in between.

These shared indexes are called whole file indexes (for
obvious reasons), and they are usually Regular type
indexes. They are the only kind of index that can have
more than one IEN subscript; in fact they must have
one IEN subscript for each level of the hierarchical file
spanned by the index. For example, a whole file index
on a field in a subfile one level down will have first an
IEN for the top level parent of the subfile containing
the indexed entry, and then the IEN of the subfile
entry itself. A whole file index two levels down will
have three IEN subscripts in the same order, and so on.

An excellent example of a whole file index is the New
Person file's BB index,, which is actually cross-refer
ences the Alias field (.01) of the Alias multiple (field
10, DD 200.04). For comparison I've included the nor
mal B index on the multiple, which cross-references
only entries in the multiple, not the wbole file:

AVA(200,0) = NEW PERSONA200IA42A22
AVA(200,9,0) =.
MARSHALL,RICKATOADAxxxxxxx~xxxxxxxxxxA@AAA
lAAl

AVA(200,9,3,0) = A200.04A9A8
AVA(200,9,3,1,0) = TOAD
AVA(200,9,3,2,0) = SHADOW
AVA(200,9,3,"B","SHADOW",2)
AVA(200,9,3,"B","TOAD",1) =
AVA(200, "BB", "SHADOW", 9, i) =

M COMPUTING 33

AVA(200, "BB", "TOAD", 9, 1) =

As you should be able to see from this example, that B
index is only useful for picking entries in the Alias sub
file if you already know which New Person file entry to
look in, whereas the BB index lets us actually pick the
New Person file entry based on the values from the
Alias multiple.

Index Ownership: lwo Files

An important feature of whole file indexes is that they
"belong" to two different files. The data comes from
the Alias subfile, but the index is located up on the New
Person file, and it cross-references both of them; this
shared ownership is reflected by the fact that even
though the cross-reference definition lives under the
.01 field of the Alias subfile's DD entry, it shows up
under the list of available lookup indexes in the New
Person file's DD. Of the indexes FileMan supports,
only whole file indexes have this kind of shared owner
ship.

Traditional or New Cross-References

As a side note, note that this BB cross-reference on the
Alias field is a traditional one that predates version 22
and is therefore defined where cross-references have
always been defined: attached to the definition of the
field they cross-reference. Starting with version 22, to
take advantage of the many new cross-referencing fea
tlires you may create a "new" cross-reference, which
will be defined in the new Index file (# .11) instead.

KWIC, Mnemonic, and Soundex Indexes

Three other types of cross-references, used less fre
quently and probably therefore less well understood,
create indexes but have not been upgraded with version
22 to include the new capabilities. They must be creat
ed as traditional cross-references.

The KWIC, or Key Word In Context, cross-reference
builds an index that parses out all the words of the field
value and stores each one in the KWIC index. This lets
users pick file entries based on an incomplete recollec
tion of all the words, and is especially useful for files
that store book or movie titles and the like.

Mnemonic cross-references add entries to the file's pri
mary B index based on the values of some field other

34 M COMPUTING

than the .01. These mnemonic entries are distinguished
as being the only index nodes equal to anything other
than the empty string, the value 1. The intent is to let
other fields behave like extensions of the .01 and be
used for most lookups, but given FileMan's many flexi
ble lookup features their use is being discouraged.

Soundex cross-references create indexes that store a
code that approximates the sound or structure of the
field value rather than the actual field value itself. Sim
ilar values should encode to the same code value, which
lets a user who can't quite remember how to spell a
name but can come close succeed with the selection.

Indexes Created by MUMPS Cross-References

One of FileMan's strongest features is that through the
use of programming hooks you can usually extend its
capabilities when its built-in features do not solve your
problem. One of the most powerful and widely used of
these is the M type cross-reference, which fires under
the same conditions as a Regular cross-reference but
whose logic is anything you choose to have happen at
that point.

Although M cross-references can do anything, in prac
tice, well over half of them are used to build indexes
not directly supported by FileMan. Often, the resulting
indexes conform to the structure of a r~ular index, so
the designers put them among the standard sort or
lookup indexes and FileMan detects and uses them like
built-in ones, but sometimes the resulting index has a
structure not supported by FileMan. The clearest past
example of this was compound indexes, which FileMan
could be made to use for sorting through the use of a
special input parameter to the sort module, but which
FileMan could not use at all for lookups.

Now that FileMan 22 has so extended the capabilities
of Regular indexes, many existing M cross-references
are candidates for replacement. This is particularly true
of M cross-references that were used to build Regular
compound indexes.

Because FileMan's lookup couldn't use these in the
past, they're all up in the sort namespace; if they're
redefined in the Index file and renamed to the lookup
namespace, FileMan will. let users look up file entries
with them.

Also, since FileMan had no way of knowing what these

May 1999

cross-references did, it could not optimize the creation
of the resulting indexes. With the new support, devel
opers can define Regular compound indexes that are
built far more efficiently, firing logic once per record
update rather than once per change to a field used to
build that index.

Many other kinds of M cross-references are also up for
replacement, from those that built inverse date indexes
(you can now store the real date and tell FileMan to
traverse the index backwards) to those that screened
out entries (you can now give FileMan screening code
for Regular indexes) to many more.

You should take some time after installing FileMan
version 22 to look back over the indexes you've built
over the years and decide which ones are worth the
investment to transfer over to the new Index file.

Conclusion""

Because of the leap in capabilities version 22 repre
sents in cross-referencing, this would be a good time to
retrain yourself and your coworkers not just in the new
features but also those obscure but useful older ones
you may have overlooked. I hope this article has helped
give you a framework for exploration. Next column we
will walk through the creation of some indexes using
FileMan's new ScreenMan options to point out all the
choices and pitfalls. M

If you have questions or comments about FileMan 22 or topics
you would like to see addressed in this column, send email to
.FMTEAM@FORUM VA. GOV,
or write to: Infrastructure Maintenance Team, VACIOFO-San
Francisco, Suite 600, 301 Howard Street, San Francisco, CA
94105.

The ubiquitous Rick Marshall (toad@eskimo.com) is a hard
hat (www.hardhats.org) who works at the VA 's Puget Sound
Health Care System. He knows that he is overcommitted, and
he even knows why, but the more tasks he removes from his
plate the busier his life gets. Weird.

http://www.mtechnology.org

KB SQL Version 4.01 -
The upcoming release of KB_SQL contains
several exciting new features, including:

• The proven SQUODBC solution for
all M types, including Cache

• Windows Query and Reporting
Environment

• Support for long TEXT data type
• Improved query optimization for

better performance
• Online documentation
• And more!

Want to know more?
www.kbsystems.com

KB Systems, Inc.
Voice (703) 318-0405

©1999 KB Systems, Inc.
All products are registered trademarks

of their respective companies.

,1 ~----/\'

• Checks both routines
and global formats

• More complete
than line parsers

• Creates on-line
documentation

• $3 per routine,
quantity discount

• FREE sample run
(20 routines)

+ij~ ~;:!!!?ls
Programming Systems

CALL TODAY! 617.547.1459
Visit us at: www.m-tools.com

M COMPUTING 35

