
FEATURE ARTICLE

It is Not a Fancy Language, So I Call it M'ish

by Paul Perrin

I very much liked DTM, it was very small and very fast.
It also had enough functionality to make it useful as a
utility programming language for DOS. (As an imple
mentation I actually prefer DSM, but I don't have a
VAX at home.)

However, although DTM made the leap to become win
dows-aware and could almost have been described as
windows-friendly, it unfortunately never went windows
native. Even "long file names" were beyond it; the Win
tel clock continued ticking but DTM was no longer in
the race.

The future of "no fuss" Mon the PC seemed to be point
ing in the direction of MSM-WS, and with its recent
"freeware" version, this really seemed to be the way to
go. However, with its changed circumstances, it seems
likely that it too will be frozen in its development, and
time will erode any advantages that it may currently
appear to have. So, as I have always known in my heart
of hearts, to have the job done properly, I will have to do
it myself. So here starts PSM, Perrin Standard M (oops,
I mean Public Standard M). The M is the immediate
aim, the P will depend on cooperation from others, and
the S may take a bit (or a lot!) of extra work when the
rest has taken on some shape-particularly areas that
may be overlooked initially such as including standard
error trapping, reverse $0 and $Q, namespaces, exact
value of naked indicator after evaluation of complex
expressions, etc.

In the past, I have written a "global style" file system in
Delphi on the PC. Further in the past, I have worked on
the internals of a Modula-2 compiler on PD P's, and even
before that, I worked in machine code on the Sinclair
ZX81 (sold by Timex in the USA) including some disas
sembly of the ROM. So while an interpreter for M may
be a stiff challenge, hopefully it will not be an insur
mountable one. Lets see.

22 M COMPUTING

Overview of an M job

To run an M job we require:
• A local symbol table for the variables
• A global symbol table to interface to the globals
• A source code buffer for the code
• A "compiled code" buffer for the translated code

currently being executed
• Some stacks to hold NEW'd variables, return

addresses following 'DO's, return addresses
from internal calls, etc.

• A program counter (PC) to show the currently exe
cuting command.

Parsing M(ish) code

A semi-colon in place of a command will cause the rest
of the line to be ignored.

A command is made up of a single character, which may
be immediately followed by a colon and an expression
(the post condition), which will be followed by a single
space and an argument list.

The argument list may consist of an argument optional
ly followed by any number of further arguments preced
ed by commas. The argument list is terminated by a
space or end of line.

With a few exceptions, each argument may include a
colon followed by a post conditional

A line is made up of an optional label, white space mixed
with optional dot "level indicators" and a sequence of
one or more commands.

Quotes and brackets (parenthesis) around arguments
will have their "usual" meaning.

October 1998

Source to Intermediate Code

The purpose of this function is to format the source in
such a way that the rest of the M interpreter can worry
about the tricky bits of M and not have to mess around
with (too much) code parsing.

For this, a data structure is used that consists of an array
of arrays of arrays of strings(!). The first index is the line
number, the second is the command number, and the
third is an array consisting of: command name, post
cond expression, argument list. Following the argument
list, there will be entries for each argument and each
argument's post condition.

The first command (command 0) for each line is a
"pseudo" command, indicating that start-of-line pro
cessing is to be done (it also holds the label and dot level
information).

Sothecode 'ROUT •. IF A=l0,B=3 SET:C=l
"'\

D=12' may become

CODE[0][0][0] = %SOL
CODE[0][0][l] =
CODE[0][0][2]='ROUT .. .'

CODE[0][0][3] ='ROUT'
CODE[0][0][4]=
CODE[0][0][5] = '3'

CODE[0][l][0] ='IF'
CODE[0][l][1] ="
CODE[0][l][2] ='A= 10,B=3'
CODE[0][1][3]='A=l0'
CODE[0][1][4]="

CODE[0][1][5]='B=3'
CODE[0][1][6]="

CODE[0][2][0] ='SET'
CODE[0][2][1] ='C= 1'
CODE[0][2][2]='D=12'
CODE[0][2][3]='D=12'
CODE[0][2][4]="

; Special flag value
; Null
; Label and whitespace

and dots
; 'Argument' 1 Label
; Null
; 'Argument' 2 Dot

Depth (ignored for the
moment)

; Command Name
; Post-Condition
; Arg List
; 1st argument
; 1st argument post-con

dition
; 2st argument
; 2st argument post-con-

dition
; Command Name
; Post-Condition
; Arg List
; 1st argument
; 1st argument post-con

dition

Interpreter (Stack and PC Handling)

The core of the interpreter is based around managing
the program counter (PC) and the stacks. This covers all
the flow control of the program which is controlled by
the commands IF' DO' GOTO' FOR, and QUIT.

http://www.mtechnology.org

Other commands can be freestanding and probably
don't need too much access to the internals of the inter
preter.

The PC is implemented with four elements (line, com
mand, argument, and "popped flag"). The first three are
to index the "CODE" structure described above. The
popped flag indicates whether an argument is being exe
cuted for the first time, or whether it has passed control
elsewhere, mid-processing (i.e., The first time a "FOR''
is executed it must initialize its counter and then (termi
nating condition permitting) call the rest of the line). At
the end of the line, the FOR command is "popped" back
to. At this time it must process the incrementing of the
counter, and advance to the next argument, if this one is
exhausted (terminating condition has been reached).

In fact, the purpose of the % SOL pseudo command is just
this-first time through it just pushes its PC onto the
stack, whereas when it is popped back to (from the end
of the line or the termination of a FOR loop), it incre
ments the line count to continue the processing. In prac
tice this gives a very elegant command processing loop
without the need for much "special case" processing to
maintain the program flow.

So every time we process a command that may need to
be popped back to, we "push" its PC on to the stack for
later. In the case of the FOR, the index name, the incre
ment and terminating values are also saved for re-use
(when popped).

A second stack will be used for handling "NEW" vari
ables. It will have a marker record pushed each time a
"DO" is called and can have values (the original values of
the NEWed variables) pushed at any time, but these val
ues will only be popped when a QUIT terminates the
scope of a DO.

Most other commands will just do their job (update the
symbol table or something similar), increment the argu
ment part of the PC, and then let processing continue.

Expression Evaluator
- If null return null
- If literal return text
- If function, call, return value
- If variable, retrieve and return value
- If expression
- - Split expression on last operator (pop any brackets)
- - Call evaluator for right-hand-side of expression
- - Call evaluator for left-hand-side of expression
- - Dispatch operator

M COMPUTING 23

Source Code

Each routine will be held in a separate native file .mrd.

Global Handler - Overview

Just as a note to those who don't know, M globals can be
roughly thought of as the following:

1.) Print a global list of any global, and draw a line
between every 10 global references. These are your
"data blocks." Number the blocks.
2.) Make a new list of the first global reference in each
of these datatilocks, and instead of writing the data
against each of these references, write the number of the
data block that they came from. These are now your
"bottom level pointers."
3.) If your new list has less than 10 references (i.e., is
only one block), then this is your "top level pointer"
block (if your global had less than 100 records, then it is
also a bottom level pointer block). Now you have fin
ished! Otherwise, draw a line between every 10 refer
ences and number each of these blocks.
4.) Make another new list of the first reference in each
of these blocks and again write the number of the block
that the reference came from against the reference (e.g.,
GOTO 3).

Using this model, the "read and write" sections below
should make some sense!

Global Handler - Implementation

This is likely to change considerably under development,
but the interface from the main processing will be kept
consistent. It will mainly consist of a buffer for the glob
al reference, a buffer for a record value (for SETs), and
a buffer for flags (similar to the result of the $D com
mand).

In outline, the global data is expected to be held in stan
dard b + tree storage, two native files per global: .mgp
block length 512 (pointer structures) and .mgd (the data
record storage) block length 1024. No key compression
will be implemented initially. Global references will be
stored as single strings making the record key. They will
have no outer brackets, commas separating subscripts
will be held as nulls, numeric subscripts will be preceded
by the ASCII character with a value of 1, and by two dig
its, a binary representation of their value.

The first block of the mgp file will be the top level point
er (which may also be a bottom level pointer). Interfac
ing to the global handler will require a global reference

24 M COMPUTING

buffer, status buffer, and return value buffer.

Each block of the mgp is structured as follows (left and
right block pointers may be added).
<blocktype> :byte; BLP (pointer to data file block),

or not
<keycount> :int ; Number of records in block
<data> : array [1..keycount] of

<keylen> :int
<key> :array [1.keylen] of char; string

formed from subscripts
<down> :int

Each block of the mgd is structured as follows (left and
right block pointers may be added):-
<datacount>: int; Number of data records in block
<data> : array [1..datacount] of

<keylen> :int
<key> : array [1..keylen] of char
<datalen>: int
<data> : array [1..datalen] of char

The basic logic for global access is as follows (note the
really neat trick of splitting/merging blocks on the way
down, keeping the file consistent at each step, and avoid
ing the need for cascades of splits going back up the tree
at any time):

Read:
- Get block 1

\..-
- Find required down pointer
- - Scan to last key not preceding required key
- If not BLP then
- - Get record pointed to by record
- - Iterate.
- If BLP then
- - Get specified block in the .mgd file
- - Find key
- - If found return data
- - If not found return ""

Write:
- Get block 1
- If nearly full then insert level
- - move block 1 to eof
- - create new first block with first key only, pointing to
moved block 1
- Find required 'down' record
- - Scan to last key not preceding required key
- Get 'down' record (maybe in .mgd file)
- If down-record is nearly full then split
- - Move second half of down record to the end of its file
- - Insert a new pointer record to this new block
- - 'Get' correct pointer record for required key (may be

October 1998

the new one)
- If not BLP then
- - Get record pointed to by record
- - Iterate 'Find required down record'
- If BLP then
- - Get specified block in the .mgd file
- - Find key
- - If found, change data
- - If not found insert.

Kill

Because KILL can remove many records at a time, it is
more involved than the other commands. As all the ref
erences to be removed will be contiguous, the basic tech
nique is to first isolate the dead references from other
references by splitting the data blocks immediately
before the first record to be killed and immediately after
the last reference (keeping the BLP and higher pointers
consistent with each split). This exercise is repeated at
each higher level, unless we are at a level that has only
one pointer to the dead sub-tree, and that pointer is not
the first in the block. Discarding this pointer will kill the
sub-tree. (Garbage collection or dataset compression to
recover killed blocks is left as an exercise for the reader.)

Finally

This article gives some ideas of how things are expected
to work and how they will be approached. A detailed
examination would require a book to itself, and that time
is probably better spent on the implementation. But
hopefully this shows that such a project is not totally
overwhelming, so if anyone reading this has experience,
knowledge and time that they are willing to donate to
the cause do let me know. If a basic system could be put
together, and the source code could be made available to
students and other interested parties, then the future
development of M could be unlimited. After all, extend
ing an existing system is less intimidating and more
immediately rewarding than starting from scratch.

Since starting this article, some progress has been made
towards an implementation based on this outline. The
interpreter is being developed in Delphi, but does not
really exploit any Delphi-specific features, so it should
be easy to translate to other languages. The parsing and
all the flow control commands have been implemented
and seem to work well (local symbol table management
and expression evaluation are very basic). An interesting
spin-off of this could be a Delphi "M_Memo" compo
nent that can contain and execute M code, and on its
own it would be an M job, but with access to the other

http://www.mtechnology.org

controls on the same form (probably via user definable
SSVN's). It could transform standard Delphi into a com
plete, M-oriented, native, visual development environment
for Windows (and in only a few pages of Delphi code).

However, the language interpreter is only a small part of
an M system. Multiple job handling, networking, device
interfacing, data sharing, and security, etc., are not real-
1y touched upon here. Some of this functionality will
probably come from interfacing the interpreter to the
OS, but that is another project, and maybe one that oth
ers would like to take up when the basic system is in
place. ______________ M

Paul Perrin has been programming since the late 1970's. He
has been freelancing since 1987 and is always interested in
new challenges. He also runs a free classified advertising
webserver with a DTM backend (http://www.admatic.com)
that is very fast, but no longer has any upgrade path. He can
be contacted at Immediate Data Ltd, 95 Trevelyan Road,
Tooting, London SW17 9LR, England.
Email: paul@idltd.cix.co.uk
http://www.cix.co.uk/-idltd/
Email relating to this article should be sent to
psm@idltd. cix. co. uk,

ESI Will
Transform Your M Systems

to Obiect Technology
Protect your M investment while you migrate to

3-tier client/server, internet & Object Technology
including, Java, VB, Delphi and others.

ESI has the knowledge, experience and
resources to start today!

11 ESI Technology Corp.
5 Commonwealth Rd. Natick, MA 01760

M COMPUTING 25

