
FEATURE ARTICLE

From M to Windows: One Step or Two?

by Max Rivers

Abstract

This paper postulates the need for a new transitional
technology to aid in reengineering existing M software
which was originally written for character-based displays,
into graphical-user interfaced applications. One solution,
Simple Windows in M (SWIM), is described in detail.

Windows has finally arrived. Why won't my
customers use it?

There is a great deal of concern about the future of M.
While M still excels in database management and fast
development, its reputation continues to focus on its one
major drawback: M "doesn't do windows."

Nearly all of the major M implementers offer state-of­
the-art Windowing solutions. So why is it that not one of
my customers has plans to convert their systems?

It is because they perceive the conversion as either too
complex, too costly and too dangerous, or all three. They
are concerned that they will have to switch from the sim­
ple M environment they are currently using to the more
complex world of the client/servers; that they will need to
buy a new version of M and in many cases will need new
networking hardware; that they may have to hire new
people to install and then maintain these new networks;
and that they will either have to hire new programmers
who know languages other than M, or go through the
time and expense of retraining their existing staff.

And this is prior to the really frightening part of the con­
version: they will have to rewrite their thousands (or mil­
lions) of lines of mission-critical code. All of this, just to
pop up a few windows.

No wonder M continues to be windowless!

http://www.mtechnology.org

Converting Legacy Systems vs. New Development
Continuity vs. Innovation

I have not hesitated to recommend any of the M vendor­
windowing solutions to customers who are considering
developing new M systems from scratch. However, con­
verting existing M applications involves a completely dif­
ferent set of issues, and therefore a very different technol­
ogy-a transitional conversion technology.

The primary concern of any institution which is dependent
on its existing computer systems for doing business is that
their applications continue to perform without interrup­
tion, even during the implementation of new technologies.
The need for continuity creates a very conservative atmos­
phere, even in the most forward-thinking IS departments.

This means that the most important aspect of any conver­
sion technology is that it must allow for small, incremental
changes, while all unchanged routines which are part of
the same application must be able to continue running as
they always have. The perception by management that this
transition can be accomplished without threatening the
well-being of their mission-critical software cannot be
overstated. Basically, any conversion whose risks (real or
perceived) outweigh the rewards will cause the conversion
project to never get off the drawing board.

Since existing systems which are candidates for conversion
generally do the job they were intended for, conversion is
seen as an enhancement, rather than a replacement. As a
result, the budgets of both time and costs tend to be con­
siderably less than budgets allotted for new development.
This severely limits access to new hardware, software
licenses and training.

Therefore, an ideal CHUI to GUI conversion solution
would:

• Utilize existing hardware, 0/S and M implementations
• Allow conversion of small amounts of code at a time

M COMPUTING 65

• Allow unconverted software to continue to run as is
• Be optimized for ease of learning
• Be inexpensive

The Missing Link: A Transitional Technology

In order to satisfy this very real-world set of concerns, we
set out to write a programming utility designed specifical­
ly for converting existing systems from character interac­
tion (CHUI) to windows (GUI).

The two primary considerations in designing this Applica­
tion Programmer's Interface (API) were: 1) it needed to
be simple enough for any M programmer to use without a
lot of new training, and 2) it had to minimize the amount
of code that needed to be changed in order for an existing
M program to pop up a window.

The Simple Windows API was designed as a simple set of
function calls written in standard M so that programmers
would be completely familiar with the format and so that
the API could run on all existing M implementations.

A separate, compiled application (SWIMMER.exe) runs
in the background on the displaying PC's or Mac's and
handles all the interactions between the end-user, the win­
dow, and M. The windows which SWIM draws are
designed as very-smart-dumb-terminals, or very-thin­
clients. As a result there is no need for any window-spe­
cific programming, no programming in any language
other than M, and no need to port M code up into the
window.

Because the API is written in M, it was designed as an inte­
grated extension to M's functionality. So data returned
from the user's interaction with the window comes in the
form of a local M array. Another example of this M-centric
approach is that only the name of a global is needed to pass
a list of data to the window. The API handles the $Order­
ing for the application programmer, including getting
more data from the global if the user scrolls down past the
first batch of data sent to the window.

All interaction with the user which requires information
not already in the window (program flow, syntax checking,
help prompts) is handled from inside the M environment.
In most cases, the original code which accomplished this
for the character-based interaction can be used by chang­
ing the user interaction from READs and WRITEs to
calls to the DRAW function.

One of the trickiest parts of writing this type of API is the

66 M COMPUTING

age old trade-off between complexity and flexibility. We
wanted the novice GUI M programmer to be able to cre­
ate fully functioning windows with as little as a single line
of code, while enabling the more advanced GUI program­
mers to have access to the full, exciting, and complex range
of attributes available in the windows environment.

To this end, the API defaults every attribute, allowing
application programmers to set only those qualities that
are unique to their application, with the most prominent
attributes (location, size, etc.) readily available as argu­
ments to the function call. Then, for the more sophisticat­
ed GUI programmer, the final argument in every function
allows for direct calls into the Wmdows Toolbox. A Rapid
Application Development (RAD) tool, called Visual
SWIM is also available which lets programmer's create
their windows by drawing them and then accessing the
complete set of attributes from selectable lists.

Simple Windows: One Example of CHUI-to-GUI
lhmsition Technology

When designing any piece of software, a report for
instance, it is always a good idea to start with the final
product and then work backwards through the flow of
data: from final report to data structures to data collection.
In this same way, by focusing on the target users, namely
application programmers involved in conversion of legacy
systems, we were able create a design1Specification which
uses a very different approach from windowing solutions
that were designed with new development in mind.

To this end, we have developed a CHUI-based windowing
utility which we call Simple Windows In M (SWIM).
SWIM is:

• A set of 10 standard function calls: one for each widget
type (window items like buttons and text fields are all
called widgets in the windows parlance)

• Two functions for communicating between M and dis­
played windows: one for requesting data back from a
window (R1N), and one for sending data to a window
(SET)

• A compiled executable program, SWIMMER.exe,
which runs in the background on the displaying com
pute.

• A set of auxiliary functions for advanced GUI program­
ming (such as managing multiple windows at the same
time)

June 1998

Creating a Window with SWIM

Every SWIM widget function call has seven arguments
which allow the programmer to define its place in the win­
dow (X,Y), its size (WIDE,HI), label parameters
(LABEL, LABEL POSITION) and what action(s) (such
as returning data to M) it will make in response to users
(COMMAND).

A typical function call would look like this:

set VAR=$$WIDGETA%SWIM(X,Y,LABEL,LABELPOS,
WIDE,HI,VALUE,COMMAND)

where WIDGET can be either:
1.BUTTON
2. TEXT
3.LABEL
4.CHECKBTN
5.RADIOBTN
·~DROPLIST
7.LOOKUP
8.LINE
9. BOX or
10. PIX (for picture)

Calls to any function returns the operating system's internal
identifier for that widget. The application programmer need
never know what this value is, because they have this data
stored in a local variable (VAR in the example above) of
their choice.

Each call to a widget defines, but does not display the widget.
Once the whole window is defined, the application program
calls the DRAW function, which alerts the background job to
display the window, and interact with the user.

A functioning window can be created with the program:
set BUT1=$$BUTTONA%SWIM(l0,10,"Hello World.")
set x=$$DRAWA%SWIM()

Notice that there is no need to specify the window's
dimensions or attributes (though this is possible with the
WINDOW function). SWIM automatically creates and
sizes the window for all the widgets defined, in an effort to
minimize what the application programmer has to include
in order to create the window they desire.

Interacting with a Window: RTN and SET

If the COMMAND argument of any widget is set to RTN,
that widget will return its name and value (and the names
and values of any other widgets specified) to M in the %rtn

http://www.mtechnology.org

array. This data, now in a local M variable, can then be
processed exactly as if it had been input through a read state­
ment in a character-based interface.

To make our Hello World program interactive, let's include
an RTN command:

set BUT1=$$BUTTONA%SWIM(l0,10,"Hello
World.",,,,, "RTN")

Sending data back to the window is done with the SET func­
tion. Let's add a text field to receive our data (we'll store the
name of this text widget in the variable "Tl"):

set Tl=$$TEXTA%SWIM(l0,50,"M answers:")

Since the name of that new field is in the M variable Tl, the
following code will write "Hi Back!" into that text field:

set x=$$SETA%SWIM(Tl,"Hi Back")
set x=$$DRAWA%SWIM()

Figure 1

With only a handful of functions, SWIM can produce all the
major widgets (see Figure 2): displaying any GIF image, lines
of any size or color, boxes, text fields with scrollbars, push
buttons, checkbuttons and radiobuttons, pop-up fields and
lookup fields, menus, as well as encoded password windows,
help and error windows, and multiple windows at the same
time.

Figure 2
M COMPUTING 67

Converting CHUI to GUI

The real test of a transitional technology is how well it
does on conversions.

The main challenge in converting code written for a
character interface into a windows program is that the
structure of the programs needs to be different.

There are three major types of program structures found
in M programs: block, modular and object oriented
(OOP), in ascending order of complexity (and therefore
of flexibility).

Most character-based programs are written in block
form. They generally have three different blocks which
keep repeating: the first block, the user-interaction
block, writes out the prompt and reads the response; the
second block checks the user's response for syntax and
appropriateness and then either returns to a previous
prompt, quits or goes to the third block, which files the
data (see Figure 3).

Write Prompt
Read Response

Syntax CheckingBlock

Filing Block

Figure 3

The two major variations on the block structure are:
1) Prompt and Syntax blocks repeat until all the data is
collected, and then all the filing is done in one block
which follows (Figure 4); or

As Answer
Check
File
As Answer
Check
File
As Answer
Check
File
•••
As Answer
Check
File

Figure 4

68 M COMPUTING

2) All the prompts are written out first, in a "form" and
then all the reads, syntax and filing blocks follow (Figure
5).

Ask/Answer
Check
Ask Answer
Check
As Answer
Check

(File)
Figure 5

What all of these block structures have in common is that
regardless of when the prompt is written out, each read
happens in a linear order. The program determines
which question comes next, and the user's only choice is
to respond to the computer's next question. This type of
interaction is called "modal."

Because of this modal interaction, the read blocks (and
often the writes as well) occur every 10-30 lines, with syn­
tax and filing blocks interspersed.

Windows programs tend to be non-modal. The program
displays all the prompts (similar to the modal "form"
structure) but the user can interact tvith the widgets in
any order. In traditional window solutions, this is han­
dled by porting the syntax code up into the widgets in the
window, so that each object does its own syntax checking
(and sometimes its own filing). In most Windows/M
hybrid solutions, this means having some code up in the
window, and other subroutines down in the database.
This tends to make maintenance more difficult, and the
design specification more complex. This type of structure
is the kind found in Object Oriented Programming
(OOP).

SWIM programs might be described as a half-step
between the block and OOP structures. Simple Windows
requires a modular structure: while there is no need to
move code up to the window, but the block structure
does need to be reorganized to accommodate the non­
modal interaction allowed by windows.

By cutting and pasting all of the user interaction blocks
into a "windows definition" module, and moving the syn­
tax and filing blocks into a "RTN" module, a SWIMified
routine restructures a CHUI program for GUI, using

June 1998

most of the CHUI code unchanged.

Because the data is returned from the window in a local
M variable, the original syntax and filing blocks will need
little or no change. In conversions done to date, CHUI M
programs requires changing only about 10% of the code
in order to interact with SWIM.

lransition to What?

Since "SWIMifying" a set of routines requires moving
from block to modular structure, it is a good investment
even if the ultimate solution turns out to be adopting a
more integrated, vendor's windowing solution. The time
spent adjusting the flow of control to accommodate non­
modal user interaction will lessen the amount of changes
needed in the code even if the end platform is signifi­
cantly different from the current one. In the meantime,
users get the advantage of the GUI-interface, and system
designers have~ real-world prototype to work from.
Transitional conversion can be used to move up the
implementation of windowing technology before an insti­
tution is ready to commit to an overall conversion effort,
without closing the doors to any new technology which
may come along in the near future.

Converting Modules Incrementally

Another major concern for conversion to a new technol­
ogy is how much of the original application to convert at
one time. New technologies that require new hardware,
versions of M, and/or new programming languages may
require that the entire application be converted at once,
or at the very least, modified to accommodate the new
platforms. Since Simple Windows was designed to run in
the existing environment, it is possible to implement on a
single screen by screen basis, leaving the rest of the appli­
cation completely unchanged.

Modules that would benefit most by the non-modal win­
dow's environment (like patient registration or acces­
sioning) could be converted first. Then modules that are
particularly easy to convert, ones that are already in the
"forms" structure could be done next. Then, other mod­
ules could be converted on an "as needed" basis, perhaps
because there is new development in that module, or they
are simply next in priority.

It is also completely conceivable that some aspects of an
institution's legacy system will remain CHUI-based
indefinitely, while others are completely converted into
windows-based interaction.

http://www.mtechnology.org

Hardware Configurations

Another significant concern about conversions, is the
question of hardware. Many M implementations which
are still using character-based interaction are running on
PC's. Whether the PC has the M database on its own
disks, or the database is on a server somewhere else, if
the PC is running any windowing operating system, and
both the M database and the displaying PC share access
to any disk, SWIM can be used to display windows. This
is true for any windowing O/S including Unix, Microsoft
Windows, or Apple's Mac O/S. It is important to under­
stand that it is the O/S of the displaying computer that is
important, not the operating system of the server. So
applications running on mainframes or DEC mini-com­
puters can upgrade to windows using SWIM as long as
the end-users are running on computers with one of the
windowing O/S's. ·

Conclusion

Converting existing character-based M applications to
windows is a significantly different process than designing
window's applications from scratch. This paper intro­
duced the concept of a transitional CHUI-to-GUI tech­
nology for applications written in M. Simple Windows is
one example of transitional conversion technology which
provides the capability to incrementally upgrade mission- ·
critical software to GUI with relatively minor changes to
the existing applications using standard M as the only
programming tool necessary, and with little or no hard­
ware changes required. M

Max Rivers is CEO of Simple Windows, Inc. located in western
Mass., as well as being an M consultant for over 15 years. He can
be reached at maxrivers@aol.com.

Infonnation about SWIM can be found at http://www.Sim­
pleWindows.com, or through email at SWIM@SimpleWin­
dows.com.

M COMPUTING 69

