
FEATURE ARTICLE

A Business Rules Fralllework

by Terry L. Wiechmann

Abstract

Fundamental•. to transforming legacy M applications to
new technology is the transformation of business rules.
Business rules constitute years of investment and repre
sent the content of any business. This paper has been writ
ten within the spirit of interoperability and assumes that
organizations are looking for ways of transforming their
application systems to new technology. It proposes a
framework for extraction, organization and distribution
of business rules. It assumes a client server environment
where the rules are implemented on the appropriate tiers,
independent of any particular technology. Additionally, it
assumes the framework foundation to be object oriented.
Although the M language does not contain approved
object oriented extensions, there are two object oriented
M implementations in use today that qualify as targets for
business rule distribution.

Organizational Goals

There are certain goals that most organizations want to
accomplish once they decide to transform their applica
tions to object technology. They are:

• Reuse as much of the underlying infrastructure invest
ment as possible.

• Save the data definition, its storage structure and the
application business rules within an object repository
for the purpose of re-evaluation and future extension.

• Move to modern technology such as object technolo
gy and client server.

• Extend the application using the new technology.

Historical Overview

Most M applications consist of code that is tightly bound
to the database. Business rules are largely embedded in
the code. Some rules are embedded in a data dictionary if
it exists. This tightly bound approach to creating applica
tions has historical significance in that it offered a low
price/performance ratio when computers were much
slower and more expensive than they are now. However,

28 M COMPUTING

tightly bound systems tend to be inflexible whereas loose
ly bound systems are more flexible. Within the last 30
years, computer hardware has increased tremendously in
speed and has become comparatively economical. Tech
nology has allowed application development to evolve
from the tightly bound approach to a loosely bound, dis
tributed approach. In addition to this trend, object orien
tation has added an organizing paradigm that is highly
compatible with the distributed trend.

Moving from a tightly bound, inflexible legacy application
to a loosely bound, flexible, distributed object oriented
application is largely a matter of:

• Building an object repository to hold the legacy data
definitions, data structure, business rules and object
model, allowing these components to be easily modi
fied and extended to represent the current business
model.

• Using runtime generators to distribute the business
rules as executable code across a distributed client
server environment. This means to other language
environments.

• Supporting various database systems.

The following sections describe how distributing the busi
ness rules can distribute the processing with the conse
quence of specializing the M environment as a database,
and more importantly, permit the integration of other
database technologies in a homogeneous fashion.

Business Rules Organization

One of the most important goals of migrating M applica
tions to a distributed object oriented environment is to dis
tribute the business rules as executable code onto the
appropriate tiers, primarily to achieve optimum perfor
mance. To accomplish this goal, business rules must first
be categorized so that they can be applied in a flexible,
scalable fashion.

This process of categorizing business rules involves the fol
lowing steps:

June 1998

• Describing the concept of a business rule and its organ
ization

• Describing the Model-View-Controller concept
• Showing how these two concepts can be combined to

create a business rules framework

Business Rules Concept

Business rules are derived from a business requirement.
Any business requirement can be decomposed into one or
more business rules. A business rule is a constraint that is
applied to a particular business situation. It can be repre
sented as a conditional statement in the form:

IF Constraint THEN Action

where Constraint is a statement of fact about the business
requirement and Action is the action to be taken or not
taken based upon the truth value of Constraint.

For example, a business requirement may be:
All prescriptions that are filled must clearly display any
warnings on the container.

Many business rules are associated with this one require
ment. An example of one business rule produced by this
requirement is:
IF the prescription is the drug Claritin TM, THEN the fol
lowing warning labels must be clearly displayed on the
container: Take medication on an EMPTY STOMACH 1
hour before or 2 to 3 hours after a meal unless otherwise
directed by your doctor. May cause DROWSINESS.
ALCOHOL may INTENSIFY this effect. Use care when
operating a car or dangerous machinery.

Organization of Business Rules

The diagram below illustrates the basic premise behind
any business organization. That is:

Organizations consume Resources through Processes ~-----~ ~------~
~(I;>·· I I Re9>U"ces I I I

~
~

Precesses

Organiza:ims

Business
Requirements

Business
Rules

~
'flt'
a

r,-'! ~•lt.1,0:.

~- :•:t•.

Appfications

Business Rules Logical Distrilmtion

Organizations consume Resources through Processes

http://www.mtechnology.org

Within the healthcare industry for example, hospitals con
sume resources such as pharmaceuticals, expendables (ulti
mately money) through, and as a consequence of, process
es that occur daily such as surgery, exams, etc. Applications
that are built to model and support the activities within any
business environment must enforce business requirements.
This is accomplished through business rules.

From a business perspective, this approach to organizing
business requirements, and consequently business rules, is
a common approach.

Model-View-Controller

The Model-View-Controller (MVC) concept evolved out
of the Smalltalk language. It is typically explained using
Graphical User Interface (GUI) applications. However,
the concept is general and can be applied to any applica
tion. It is a design pattern.

The purpose of the MVC is to separate the application
object (model) from the way it is presented to the user
(view) from the way the user controls it (controller). User
in this case may be any user of the model. The MVC pro
vides a way to de-couple these objects, offering much more
flexibility and possible re-use.

The model knows about all the data needed by the views.
The model's protocol, its interface, contains all the meth
ods and properties needed to access the data.

The view accesses the model. It presents the model as a
particular organization. Multiple views can exist for any
model. They use the methods (or properties) of the model
to manipulate the data. The model has no knowledge of
the views that are accessing it.

Associated with the model is a controller. The controller
acts as an intermediary between the model and the views.
Any modification to the model is communicated to the
views via controller. The controller object within an appli
cation often contains the callback code for event process
ing. For example, if a model side data element is changed,
generally an event will be fired, signaling all processes
watching for that event to execute the callback. The call
back code executed will synchronize the view with the
model.

The MVC provides a common approach to organizing
computer system applications. Ignoring this common pat
tern can lead to tightly bound applications that are hard to
extend. Reusability becomes extremely difficult, if not
impossible.

M COMPUTING 29

Business Rules Framework

As a part of ESI's 'Iransformation Strategy, extracting busi
ness rules from legacy M code has forced us to do a great
deal of bleeding edge, esoteric work. After understanding
the general concepts surrounding business rules, the next
challenge is to create an organizational framework that:

Controller View Model

Organizations

Processes

Resources

Business Rules Framework

1. Organizes the rules within a business context.
2. Provides a paradigm for mapping those rules into a
client server environment.

To create a framework for business rules that are imple
mented within a computerized application, the business
organization and MVC concepts can be combined to form
a matrix as shown above.

This framework provides a convenient way to map business
requirements and rules into a computer application that
offers reusability, scalability and extensibility. It partitions
the business rules from a business and a systems perspective.

Business Rules Extraction and Exposure

Many of us at ESI have been around long enough to actu
ally witness the evolution of M applications from the tight
ly bound, no data dictionary days, through the data dictio
nary and structured programming days, to the present days
of loosely bound, object oriented, client server based appli
cation systems. The current evolutionary step has proven
more difficult for many organizations. There are many rea
sons for this, which are beyond the scope of this paper.
However, one cause has been the increased competition
within the business arena. In order to compete within
today's business atmosphere, organizations must be able to
respond to the needs of their customers. This translates to
application systems that must be extensible and highly
reusable. Those aspects of a business that are at the heart
of the business such as data definitions, business rules,
workflow rules, and GUI layouts should be readily avail
able to domain experts. Having them buried in a mountain
of application code that requires a team of programmers to
decipher is no longer an option.

30 M COMPUTING

The framework outlined in the previous section is the basis
for the organization and mapping of business rules. This
concept is central to ESI's Application Repository Tools
(ART). The ART tool set was built using our EsiObjects
development and runtime tools. The ART tools create and
maintain an Object Repository that holds the data defini
tions for each data element in an application, the associat
ed business rules as well as all mapping information need
ed to generate an object oriented runtime environment.
The Object Repository resides within the development
environment. Runtime environments are generated using
the repository as a source of definitional information. The
repository is not a runtime component.

The challenge has been to map this logical concept into the
object repository such that they can be:

1. Modified and extended by application domain experts.
2. Used by a runtime code generator to generate the rules
into executable EsiObjects, Java or C+ + code and distrib
ute them to the proper client server tier for maximal per
formance.

Conclusion

Over the years, M applications have evolved in size and
sophistication. Application business rules have become
embedded in procedural code structures. The tightly
bound, procedural approach to building applications has
come in conflict with modern distributed computing reali
ties. Because of the nature of these sfstems, concepts like
reusability and extensibility have been hard to realize. Sup
port and development cost have been rising as a conse
quence.

The move to distributed computing, facilitated by the move
to object orientation have given new meaning to reusabili
ty and extensibility. This technology provides an infrastruc
ture for building application repositories that hold the busi
ness rules, data and User Interface (UI) definitions. Hav
ing these business specific components stored in a develop
ment repository and providing runtime generation into any
external environment frees the organization from one spe
cific technical solution. Business rules can be mapped
across a distributed environment, leaving M to do what it
does best, perform as a high performance database system
that can co-exist with other database technologies. M

NOTE

1. David Taylor, Business Engineering with Object Tech
nology, John Wiley & Sons, Inc.

Terry L. Wiechmann is President of ES! Technology Corporation. He can
be reached at twiechmann@esitechnology.com. To learn more about
ESI, browse the ES! Tteb page at www.esitechnology.com.

June 1998

