
FEATURE ARTICLE

Year 2000-Making Good Titne

by George James and Jon Diamond

Where are we now?

Approximately halfway through the year 2000 crisis, the
majority of organizations have by now taken stock of the
situation and have plans in motion to address their own
problems. The picture is not, however, totally uniform.
Large organizations are further forward than smaller
organizations - they generally have more to do and con
sequently have needed to start earlier. Some countries
have achieved greater awareness than others - the US,
UK and Australia have significant government pro
grammes that have informed and stimulated action,
France and Germany have given greater priority to
preparations for European Monetary Union and the Far
East has been pre-occupied by local economic troubles.

Much therefore is being done right now, but there is still
much to be done. Many organizations have yet to
address their year 2000 problems. While they are at a
disadvantage by having less time they will at least be able
to benefit from the experiences gained by others who
have already paved the way.

This paper imparts some of the lessons that have been
learned from running year 2000 remediation projects
and in particular looks at some of the specific problems
and issues to be found in the assessment and remediation
of M applications.

What have we learned about year 2000
remediation projects?

In the past two years we have assessed and corrected
over two million lines of M code across a range of differ
ent applications of different vintages and coding styles.
In the course of these projects we have learned a great
deal about the various technical and project manage
ment issues involved in year 2000 conversions. Some of
these are summarized below:

• Watch for software falling through the cracks

The need to create an inventory of all systems and appli
cations within an enterprise is well established. In large
organizations that have many systems it is very easy for

22 M COMPUTING

small but important pieces of software to fall through the
cracks. Operating system command files (for system
start-up, shutdown, backups, etc) and end-user-devel
oped spreadsheets and PC applications are typical of this
type of oversight.

• Do not believe what the experts say ·

In the planning stages of a year 2000 project we always
ask the customer what their Event Horizon is. This is the
date on which the system will fail if no action is taken. It
is important to plan the project so that it will be complete
before the event horizon.

We have discovered that the customer is often not the
best judge of what the Event Horizon actually is. When
asked they will often give a confident statement like
'Budgets are drawn up in October for the following cal
endar year and so our event horizon is 1 October 1998'.
The implication is that they know about all date process
ing within their system and it does not Meal with any dates
more than 15 months into the future.

Even if the customer has intimate knowledge of their
application, this statement should be interpreted to mean
that the event horizon is 1 October 1998 at the latest, but
could be earlier. We have learned to perform an exhaus
tive analysis of the database in order to identify possible
Event Horizons that are otherwise unknown.

• Do not believe what the experts say (again)

'There is no need to worry about that application, it was
only developed last year and so it is compliant'. Unless
an application has been assessed and tested, then any
such claim is groundless.

I have lost count of the number of times I have seen the
following statement made in the comp.lang.mumps
newsgroup: 'My application was developed using File
Man. FileMan is year 2000 compliant. Therefore my
application is compliant. When the US Department of
Veterans Affairs performed an assessment of their File
Man based applications they found that across 21,000
routines about 8% required some change. Clearly this

June 1998

_1

I
I
I

I
i

J I
t
I
I
J
f
i'
I
j
t
~

a
t
~
~
l

l
f

syllogism is not true.

• Do not ignore the User Interface

It is very easy to make the assumption
that the user interface must be modi
fied to force the user to enter dates
using a four-digit year and for all out
put to be displayed using four digits.
The reason that dates are entered in
two-digit year form is to reduce key
strokes. This is generally a good thing.
(Internal date representation using two
digits is generally a bad thing). Like
wise the display of dates using a two
digit year is primarily to maximize the
use of screen and report real estate. It
is only where the date has a large range
(e.g., date of birth) that four digits are
actually necessary for data entry.

So it is important '1o allow the user to
enter dates using two digits. This
implies that a windowing algorithm
must be applied to the date as entered
to expand it to an unambiguous form.

• Inspecting two million lines of code

A year 2000 problem could have been
coded anywhere in your application. To
be sure, you have to inspect every line
of your application.

For a badly written application with
intensive date processing we have
found that we need to change, on aver
age, as much as one in fifty lines of
code.

For a good application the problem is
more akin to finding a needle in a
haystack. We have inspected applica
tions that have a rate of as little as one
problem per one thousand lines. The
challenge here is how to find these
problems in a cost-effective manner.

The scale of the problem demands a
systematic and automated approach.
Our RE/2000 code-scanning tool is
ideal for this purpose. It searches code
and highlights any syntax that is indica
tive of date processing using a color
coded scale of severity. It can also be
tuned to cater for application-specific
coding styles and idiosyncrasies. Our

http://www.mtechnology.org

programmers using this tool can
achieve a productivity, consistency and
thoroughness of problem identification
that is many times higher than is possi
ble without automation.

• Code conversion

Surprisingly we have found very few
cases where automating the actual con
version of the code gives much benefit.
However, some applications have com
monly repeating fragments of code that
can be converted en-masse. The major
benefit of such en-masse conversion is
simply the removal of typographical
errors from the code editing process.
This type of conversion can mostly be
performed with simple routine search
and replace tools. More complex trans
formations can be achieved using a syn
tax sensitive tool such as RE/parser if
necessary.

• Checking all those changes

Unit testing and system testing are
essential parts of the quality control
process. However, because of the rela
tively sparse nature of the changes that
are made and the fact that unit testing
and system testing have a very function
al basis, the defect yield from such test
ing is very low. In other words, a high
number of testing hours are required to
find a small number of bugs.

In many of the applications that we
have converted we have found that the
best yield is achieved from desk check
ing of converted code. Use of a highly
experienced programmer or consultant
to check marked up before-and-after
listings can identify ten times more
defects per man hour than the same
effort invested in functional- based test
ing.

• System testing

It is generally agreed that a converted
application needs to be tested both with
contemporary dates (to ensure that the
application continues to work correctly
today) and with a range of future, post
year-2000 dates.

Eight Lessons from the Front
Line

by Dan Looper

The approaching millennium date
change must be the most frustrating,
annoying, frightening and discussed
milestone that the Information Tech
nology user has ever experienced.
What about the lessons that we are
learning? Will they be forgotten
beyond this date change?

Lesson one: Sizing your challenge is
difficult. There are no magic formulas
for sizing the year 2000 problem.
Instead, it is an iterative process of
planning, executing, learning and
planning again. Many companies
need a partner to accomplish the task.
Select a partner, assign tasks, not
blame, and get started.

Lesson two: Avoid trial and error.
Much time can be wasted by changing
approaches in mid-stream. Assess
the methodologies and decide upon
an approach that is to be taken.
Establish it as the only legitimate one
for the enterprise, and cease trying
the "silver bullet."

Lesson three: Accept cost realism.
Whether the cost to repair/replace
our applications is $1.00 or $10.00 per
line of code should not be the prima
ry concern. One dollar of correction
today could save us $4.00-5.00
between now and the Year 2000.
Recognize and acknowledge the true
costs as that of lost revenue.

Lesson four: We don't have all of the
answers. Many large companies have
taken critical systems and subjected
them to a rollover to January 1, 2000.
The results have been severe. We
must learn to say, "I don't know all of
the answers," and let this become a
driving factor in building and imple
menting technology as a support tool
for our businesses both now and
beyond the Year 2000.
(continued on next page)

M COMPUTING 23

Lesson five: Correct limited focus.
We tend to become so tied up with
looking at applications that we forget
such things as infrastructure, system
interfaces, partners and suppliers,
and contingency planning. Consider
the entire issue at hand rather than
focusing on just the applications.
Applications alone will not allow
businesses to continue to function.

Lesson six: Tools don't fix the prob
lem, people do. There are many
good tools on the market. There are
also many "Master Mechanics" both
within the companies experiencing
the problems as well as through part
ners; use the mechanic.

Lesson seven: Testing as usual. Test
ing must begin as a risk abatement
process when we are inventorying
our technology. A test readiness
review early in the process should be
used to determine whether we can
realistically hope to test both func
tion and date handling for Year 2000.

Lesson eight: Honesty is the best pol
icy. We know what must be done to
avoid catastrophe, yet we are still
telling ourselves the ultimate lie;
"This problem just cannot be this
bad." Eight years of "doom and
gloom" have had little impact. Why?
We have great difficulty being honest
with ourselves. There is a belief that
we can short cut the process of dis
covery and repair. Be honest, admit
that there is a problem, and tackle it
head-on.

With less than 600 days remaining to
correct the problem, we should be
planning for our New Year's Eve
1999 celebration. Be diligent! Effi
ciency and saving unnecessary spend
ing must be the goal to which we all
subscribe between now and Decem
ber 31, 1999.

Dan Looper is Thar 2000 National
Account Manager for Litton/PRC. He
can be reached via email at:
Looper _Dan@prc.com

24 M COMPUTING

Contemporary date testing can be per
formed by using a copy of a production
database and comparing the results
directly with those obtained before con
version. This is a simple parallel run
scenario.

Future date testing is more difficult. In
many cases small amounts of test data
can be created for future dates and the
results compared against predicted
results. However, this is often imprac
tical where the application is complex
and needs to be tested against a large
amount of varying test data. It is also
impractical when the application is dri
ven by chronological data in the data
base (for example, outpatient appoint
ment scheduling).

We have achieved large scale testing for
future dates by automatically 'aging'
the data from a copy of the contempo
rary date test database. With two data
bases that are identical except for date
fields it is possible to perform a kind of
parallel run between a contemporary
database and a future database.

Depending on whether the processing
cycles and reporting in the application
are daily, weekly, monthly or annual it
may be necessary to 'age' the database
in increments of either 4 or 28 years
(Why 4? To ensure that transactions
processed on February 29, 1996
becomes February 29, 2000 and not
February 29, 1999 or February 29, 2001
neither of which are valid dates. Why
28? Well, it turns out that this is the
number required to ensure that all
dates are on the same day of the week,
with the same leap year structure as the
original date).

If you know the location and format
all the date data in your system then
you can do this mechanically, and fairly
easily. However it is not a fast process
and does require considerable hard
ware resources.

• How to make a time machine

The amount of hardware resources
required to perform comprehensive
testing of a large application with

large database can be quite a surprise.
While the cost of hardware means that
this really should be the least of your
problems, the cost of additional soft
ware licenses and the logistics of hard
ware procurement can be formidable
obstacles.

You should consider the need for mul
tiple copies of your application and
database. You should also consider
that as time runs out you might have to
run multiple system tests (possibly with
different system dates) concurrently.
While the easiest way to achieve this is
to use multiple machines, this is not
always feasible.

It is worth knowing that all InterSys
tems and Micronetics M implementa
tions support the ability to artificially
alter the M system date (i.e. $H) with
out altering the underlying operating
system's date. For example, on a VMS
machine you could configure two DSM
environments, one with a contempo
rary database and $H value and the
other with a future database and a $H
value. Both these environments can be
run simultaneously, enabling direct
comparisons of the application in both
the 20th and 21st cenmries.

• How can you be sure you tested your
application?

In one of our first year 2000 conversion
projects we converted all of the code
and then handed it over to the cus
tomer for acceptance testing. The
users had been carefully preparing test
plans and immediately set out to test
the code we had delivered. After two
weeks they reported to their manage
ment that they had completed their
tests and were happy to accept the soft
ware.

How could their management be sure
that the users had performed sufficient
testing? Well, we were able to tell
them! When we delivered the software
we had instrumented it with a test cov
erage monitor (a feature of the
RE/2000 tool). Their management was
able to examine the test coverage statis
tics for the application and assure

June 1998

themselves that the acceptance testing had been thor
ough and comprehensive.

The sparse nature of changes that span the whole appli
cation makes it very important to be able to measure in
some quantifiable way the extensiveness of any testing
that is performed. A test coverage monitor is a simple
and effective way of achieving this.

What have we learned about the M problem
set?

In some ways M systems have fewer problems than other
systems since there is no standard format for dates which
is supported by date-processing primitives within the lan
guage as there is in COBOL. The format of
$HOROLOG has, on the other hand, influenced many
developers to store dates based on the $H range within
the database and do processing/calculations on this for
mat.

In general this is 3POd. However, even when the $H for
mat is being used there are many times when calculations
need to take into account months or years, which imply
calculations on the $H values to produce, for example,
the number of months between two dates. More com
monly, end-users are somewhat uncomfortable with the
$H format (!) and demand that dates are presented to
them and input by them in formats that they understand.
These conversions are also not supported directly by the
M language.

This means that any problems which are encountered are
mainly homegrown by the specific developers of the sys
tem. However, in more recent times the vendors have
been helping user~ by providing date conversion utilities
which make the conversion process run faster, handle
multiple (international) date formats, etc. These are pri
marily the $ZDATE and $ZCALL(%CDATASC,) func
tion set.

Unfortunately, like most software, these have developed
over time and the specification of them has changed sub
tly, but without necessarily the users of these functions
being aware of the changes. For example, at one time
some of these functions did not handle 21st century dates
at all, then they produced results with two-digit years for
21st century dates, then results with four-digit years for
21st century dates (but only two-digit years for 20th cen
tury dates).

This would not necessarily matter too much if the only
use for these functions were the display of dates on a
screen. (Users are very flexible and can determine what
these subtle changes mean, and the impact on the display
layout).

http://www.mtechnology.org

However, these functions provided a general capability
and so were used in that light. Frequently the users of
these functions made assumptions about the format of
the results and have used the results for further process
ing. For example, this happens if the year part of the out
put from $ZD has been used in a fixed format interface
file (two-digits only). This will now fail for dates in the
21st century.

Ad-hoc Date Errors

Programmers can be very adept at overcoming problems.
Unfortunately they do not always realize the implications
or test what they have done thoroughly enough. Some
real-life examples of coding problems that have been
encountered in practice are:

• The calculation of number of days in a year:
I $E(YYYY,3,4)="00" Q 365
This fails in the year 2000.

• Adding 1900 to a two digit year:
S FULLDATE= 1900+$E(VERDAT,1,2)

• Embedded assumptions that the dates can only be in
the 20th century
W 19,$P(DATE," ",3)
S YY = "19" _ $E(X,1,2)
S DATE="05APR19" YEAR
This last one gets the last day in the U.K. tax year!

• Calculation with two-digit years:
I $P(X,"/")+ 1'=$P(X,"!",2) ...
and
I CY>(X-2),CY <(X+2) ...
The user had been prompted to enter a year range into
the variable X as YY/YY. This works happily for 97/98,
but not for 99/00.

• Just bad validation code:
I X'?l"l9"2N,$E(X,3,4)> ...
This will fail in the year 2000 since 00 is not greater than 99
(which could be the right-hand-side of the comparison).

Other examples of ad-hoc errors which have been
observed in code:

• Incorrect validation of 2000 as a leap year.

• The day number of the last day of a leap year being
returned as 365, rather than 366. This is a non-obvious
but very common logic error in date algorithms. The last
day of a leap year should be an explicit test case whenev
er testing date algorithms.

• Dates beyond a certain date being invalid, e.g., 31st
December 2049, but not consistently so throughout a sys
tem.

M COMPUTING 25

• Inconsistent windowing. The following examples were
found in different places within a single application:

S DATE=$S(X <90:20,1:19)
and
S CC= 19 S:YY <50 CC=20

External Interfaces

Whilst an individual system can be compliant it is unlike
ly that, in most organizations, a system will be in isolation.
Any compliant system is therefore likely to need to pass
date information to and from other applications. Since
most of these will be non-Mones, then dates are almost
certainly going to need to be passed in non-$H formats,
typically with a two-digit or four-digit year.

In most organizations it is unlikely that all applications
which are made compliant will be implemented at the
same time, as a big bang. So each application or a small
number will need to be upgraded at the same time (a
package). The interfaces between each of these applica
tions within this package can be changed to make the
date explicit, typically using a four-digit year. However,
interfaces to systems outside the package are problemat
ic. It may be possible to change the other end of the inter
face at the same time, but as the number of interfaces
increases this becomes a more and more theoretical
approach.

Most interfaces will therefore have to remain the same,
probably using a two-digit year. It is notable that interna
tional EDI standards have only recently allowed four
digit years in messages, and therefore all EDI-based sys
tems are likely to continue using two-digit years for a long
time, if not forever. Conversely, it is notable that the US
government has mandated that all interfaces between
government departments ·(but not within departments)
must use a full four-digit year.

Use of a two-digit year can work well provided that the
window used is the same on both sides of the interface.
However, you may not have access to or control over the
window algorithm in all your applications, such as third
party packages. (Even Excel, Access and other Microsoft
products have their own pivot dates that have changed
between versions!)

Therefore you should exert considerable caution in this
area, documenting precisely what is being assumed, and
perhaps use a parameterized window which can be
changed interface by interface, rather than using a stan
dard one for the complete application. The U.K. retail
industry has decided to use a date window of 1950-2049,
which should make things simpler for them, but even this
diktat won't necessarily mean that every package/appli
cation can be changed to conform to this.

26 M COMPUTING

Note: One very frequent use of dates in an interface is
embedding the date in a file name, such as in YYM
MDD format. Unfortunately, due to the DOS filename
restrictions of 8+3 characters, it was often impossible to
create/use files with four-digit years. Thus these files
could have potential problems, either of collation within
a directory, or incorrectly derived year value, etc.

It is thus likely that many problems will not occur within
an application, but at the interfaces between them.

Database problems

• Date Storage

Dates stored using the $H format/range are compliant,
but often many systems will use non-compliant formats
for a number of reasons.

Some of these reasons include:

• Historical

The system may be so old that none of the designers
thought about the 21st century, since the lifetime of the
system was probably 5 years, 10 years maximum. (There
are numerous systems still running which were originally
built in the 1970s or early 1980s).

• Performance

Older systems especially had to be more concerned about
CPU power and the processing overhead of date conver
sion was very high if significant amounts of input/output
were performed.

• Convenience

For example, the date is only output and not used for fur
ther processing. (This is often an assumption that is over
taken by subsequent events, however!)

• Because the $H format is inappropriate

For example, a date which only represents a year, month,
accounting period, etc.

• Support

It is much easier for a support programmer to interpret a
YYMMDD date in a database (e.g. 980420) than a $H
date (e.g. 57452).

• Non-$H storage formats

Some possible storage formats for complete dates used in
practice are DDMMYY (international usage), MMD-

June 1998

DYY (US and Canada), DDMMMYY (with a three
character month name dependent on system language)
and YYMMDD. When data is stored in nodes using
these formats the system may be perfectly acceptable,
provided a windowing algorithm is used within the appli
cation for appropriate interpretation of what the year
means.

For example, dates stored as 010160, 010110 and 010125
using a window of 1920-2019 would be interpreted as 1st
Jan 1960, 1st Jan 2010 and 1st Jan 1925 respectively.

However, if the window is changed at some stage in the
future, because the system needs to be able to process
dates further in the future, then these formats may cause
problems if old data is still held within the database.
Again using the first example above, moving the date
window to 1950-2049 would cause 010125 to be inter
preted as 2025 and not the original interpretation.

In many cases partial dates are also stored in a database,
and these can be :wrticularly difficult to spot without an
intimate knowledge of the database structure. Examples
of these are frequent in Accounting systems, such as YY
as accounting year or YYMM as accounting period.

Windowing can also resolve many of the usages of these
types of dates. However, the problem with many of these
formats becomes much more severe when they are used
in subscripts, typically with a leading two-digit year. This
occurs for three reasons:

• Some software producing, for example, YYMMDD
dates may only produce either a one or two digit year for
2000-2009 (i.e., 50101 or 050101 for 1st Jan 2005)
depending on the way the subscript value is created.

• Calculations on two digit years may not wrap around
the end of the century (i.e. subtracting 1 from 00 should
produce 99; adding 1 to 99 should produce 00).

• Dates in the 21st century will no longer collate after
dates in the 20th century and most systems will have
some functions which $ORDER on dates. (Actually,
because strings collate after numbers in M globals the
years 00 through 09 will collate correctly giving rise to a
possible 2010 problem if not picked up now).

Existing Date Problems

Another problem that may be hidden within a database
is the usage of dates by users, or systems, to have special
meanings. For example, many systems will have dates of
31st December 1999 in an end-date field to mean effec
tively that there is no end. Some systems using DDM
MYY or YYMMDD formats have also used 999999 as a
special value.

http://www.mtechnology.org

Some actual uses have been Value Added Tax rates and
Branch closing dates using 31st December 1999 as an
end-date. The VAT date was entered by users in order to
overcome the problem of not being able to specify 21st
century dates and not reported to the systems developers
as a problem since the users had a work-around. Unfor
tunately the work-around only had a limited lifetime!
The Branch date was a similar problem, but this time it
was partially created by the system developers since they
embedded this date in the user-enterable format
(31DEC99) within the application.

In the case of this latter system, the standard is to use two
digit years everywhere and use a windowing algorithm on
input/output. Unfortunately, due to past programming
and user problems, dates which pre-date the low end of
this window are stored in the database (sometimes in the
OK $H format). It is therefore not clear what impact
these dates will have on the system, even when it is Year
2000-compliant. So, these will need to be located and
eliminated as soon as possible.

Conclusion - Guilty until Proven Innocent

For M applications some of the issues which concern
other development environments are not applicable.
Nevertheless, we expect that most, if not all M applica
tions will have problems which need to be rectified. Some
applications which have embedded dates in their data
base structures in non-$H formats could have a signifi
cant amount of remediation work.

Our experience shows that, even for a well written appli
cation, there are a number of subtle problems which can
be quite difficult to locate, or test for. Given these issues,
visual inspection, together with an independent verifica
tion and the assistance of appropriate tools has proved to
be more beneficial than other techniques in locating and
fixing bugs.

Testing is obviously important and requires a number of
new ideas to be introduced-rolling forward of historic
data and system dates, changing of date windows etc.
Implementing these ideas is potentially error-prone, so
automating (and testing) them is also vital.

It is often quoted that "if it uses electricity, then it is guilty
until proven innocent." Applications written in M may
be less guilty than others but the principle still applies.
Even if it's written in M you still have to prove it's inno
cence. M

Jon Diamond is an independent consultant. He can be contact
ed at jdiamond@btintemet.com.

George James is Managing Director of George James Software.
He can be contacted at georgej@georgejames.com.

M COMPUTING 27

