
FEATURE ARTICLE

The Year 2000: M and More

by Chris Bonnici

e Year 2000 (Y2K) problem is one of the most
lllle- and labor-intensive problems the IT (Infor­

mation Technology) industry has ever had to deal
with. While it seems that the need for Y2K-compliant
code is something quite recent, there is still a lot of old
code in use today (from programming languages such as
M, that have been around for a long time) that will
require a major rewrite or conversion. The reason, of
course, is that there are many systems now in operation
that will not recognize year 2000 dates as the year 2000,
but rather as the year 1900. And there are many reasons
why something so obvious slipped by in such an unnoticed
manner:

• no one realized that the code would last so long
• additional costs required to store 4-digit dates could not
be justified
• existing YY libraries were used rather than modifying
them toYYYY
• conversion was not a management priority

For some organizations, the term Year 2000 is very mis­
leading because it gives the impression that the problems
will come about in January 2000. This is far from correct.
In some industries such as insurance, the majority of poli­
cies span one year, with some that extend beyond that. In
banking, one can have dates that are 10 years into the
future. Other industries will demonstrate similar situa­
tions. This means that the problems will appear before
the turn of the century. For those organizations whose
transactions are annual, the final date to commence Y2K
project initiation was last October. This allows enough
time for organizations to start testing the new date system
during 1998 before the year 2000 dates are put into use.

Although this paper is directed towards software, the new
century may effect anything that contains the words pro­
gram and using a date. Computer systems fall under the
reign of the IT department, but temperature regulation
systems, telephone systems and others may also fall vic­
tim to Y2K. For example, equipment that normally gen­
erates a request for a service based on date, is prone to
issue a false request.

36 M COMPUTING

In many organizations, CEOs and boards of directors
consider computer departments to be a costly necessity.
Top management does not seem to appreciate the fact
that computer systems make their organizations tick.
With Y2K, IT departments must convince management
that additional funding is needed to fix something for
which there are yet no visible symptoms and that for the
time being, new developments must be put on hold. How
does one explain this? Since in the majority of cases, the
IT department will initiate the request for additional
funding, it would be wise to point out that this particular
problem will also effect areas of business (such as those
mentioned above) which are not part of the computer
department.

As far as software (which cannot be considered indepen­
dently of hardware), the following stages are necessary
when dealing with the Y2K issue:

I. Initial evaluation

Here one must identify the systems that need be checked
for Y2K compliance. It must be understood that with
large systems, the available resources may not be suffi­
cient to make all available systems Y2K compliant. Thus
it becomes important to prioritize systems. One big mis­
take is for the IT department to assume. the sole respon­
sibility for such a decision. Top management should be
involved in selecting which systems are more important
than others as these people should have a better overall
knowledge of the company structure and as managers,
are often held accountable for decisions effecting the
bottom line.

II. Y2K compliance evaluation

Working down the prioritized list, teams would evaluate
each system and ensure Y2K certification of all hard­
ware, OS (operating systems) and attached devices as it
would be useless to have functional software performing
in a non-functional environment. For example, if a ven-

March 1998

dor points out that a given product will no longer be sup­
ported, some avenues may not be feasible. Evaluation
teams must be on the alert for vendors that promise
(without any form of binding agreement) that they will be
looking into their product "soon." At this stage one must:

• Decide between a system conversion and a new system
• Decide changes in the hardware, OS and devices
• Estimate how long the task will take to complete. This
is an area of project management and it may not be pos­
sible to produce on-the-spot estimates (though pilot test­
ing may assist). Estimates that might be useful for this
task are:

• Estimates based on the number of date vari­
ables in programs (a parsing tool may be useful in
this task)
• Estimates of the lines of code that have to be
looked into
• Estimates based upon the number of debugged
lines oftbde that a typical programmer can pro­
duce

A positive thing is that as the task progresses, experience
from previous systems will help provide more reliable
forecasts.

A point worth noting here is that evaluation (and all
stages that follow) should be done on a separate machine
having a mirrored backup of the original system. There
have been reported cases of passwords expiring, software
licenses expiring, erroneous transaction dates and other
similar events occurring when the system date was
changed on a live system.

ill. Conversion commencement

Stage II above is an assessment of the system. If done
properly one will gain an understanding of the relevant
areas and can commence a strategy to tackle the prob­
lem. As stated earlier, investing in a new system for such
development would be a wise decision. This paper will
not delve into methodologies; there are numerous texts
on how to deal with new developments and how to per­
form corrective maintenance.

A point worth noting here is that there is often an irre­
sistible urge to improve the system. Experience has
taught us that all improvements normally come at the
cost of new bugs. Even if one focuses exclusively on the
date issue, errors will be introduced. Given the possibili­
ty of tight schedules, one should avoid augmenting this
with other (unnecessary) problems.

http:/ /www.mtechnology.org

Iv. Testing

This is the most important aspect of program develop­
ment and will account for 50% or more of the time ded­
icated to resolving the Y2K problem. Even if some have
skimmed this stage in the past, the penalty for doing it
now is total disaster. Imagine, if due to poor testing, cor­
rective patches contain bugs, and all of these bugs surface
simultaneously in all systems when they go live.

With the complexity of software, even exhaustive testing
may not identify all possible problems but the following
conditions will help in evaluating as much of the Y2K
problem as possible:

• Dates less than 2000
• Dates greater than 2000
• Dates that span the two centuries
• 31st December 1999
• 1st January 2000
• The First working day in 2000 (1st happens to be a Sat­
urday)
• 29 Feb 2000 (2000 is a leap year)
• Fiscal year end
• Start of next fiscal year

Testing should cover all aspects of a system, namely input,
processing and output.

a. Input

• User-entered data fields are enlarged. This may neces­
sitate reformatting of the screen layouts
• Device Input. The dates are being passed correctly and
no special marker is misinterpreted as a date
• OS input. The system date can be read and processed

b. Processing

• Calculations based on dates
• Sorting by date
• Date comparisons

c. Output

• Report output is correct: crammed reports may loose
formatting or details (e.g., end of page)
• Data passed to devices is not interpreted erroneously
• OS output: a date passed to the OS will work as
expected

The above summary gives a broad spectrum of the
aspects that must be looked at. One of the major prob-

M COMPUTING 37

lems here is that computers are very good at processing
data and can produce huge amounts of it. Peeking at the
data can give the false impression that everything is OK
when in reality it is not. It is important to distinguish
between Visible System Failures and Invisible System
Failures. In programming terminology, this approximates
syntax errors vs. logic errors.

M

The fact that M has been around for so long means that
one can find systems written long ago that have experi­
enced a multitude of changes by an even greater troop of
programmers, who may or may not be part of the organi­
zation today. This makes the task even more difficult.
What follows is an attempt at classifying how dates are
stored in M globals and offering suggestions that may aid
others in arriving at a solution to the Y2K problem.

Dates in different systems can be stored in any one of the
following formats:

• 4-digit year, human-readable format. Examples of such
date formats are YYYYMMDD, DDMMYYYY,

MMDDYYYY, with or without separators. These sys­
tems are probably already Y2K compliant (although only
evaluation can prove this to be a fact) because in many
cases, the underlying data structures determine the over­
all operational philosophy of the system.

• Integer format. M is blessed with routines that convert a
human-readable date into an integer. The number one
stands for 1st January 1841. The number 58074 is the M
integer representation of 1st January 2000 (which in actu­
al fact is the number of days that have passed since 31st
December 1840). While date computations, comparisons
and sorting should not be effected in such systems, input
and output will have to be converted so that the year is
YYYY rather than YY. This is because M systems may
treat the date 01/01/00 to be 01/01/1900 rather than
01/01/2000. Some of the system-supplied routines may also
have a characteristic that would not supply the first two­
year digits if these were within the current century.

• 2-digityear, human-readable format. The most obvious
problem area is with those dates where the year is repre­
sented simply as YY. Going from 99 to 00 could effect all
date-related processes.

Y2KRTN=>;Date Conversion Routines - Chris Bonnici - Sept 1997
=>;You use these programs at your own risk
=>;
=>;The following assumptions are being made: '\:..:
=>; Expands the two digit year of the passed date (DD/MM/YY or MM/DD/YY) parameter to
4 digit (DD/MM/YYYY or MM/DD/YYYY) - Chris Bonnici - Sept 1997
=>; If year< 50 then century= 19 else 20
=>; Null Dates will not generate an error but will return a null to calling module.
EXPDT(WHAT)=>N YY
=>Q:WHAT="" WHAT
=>S YY=$P(WHAT,"/",3)
=>Q $P(WHAT,"/",1,2) "/" $S(YY<50:"20",1:"19") YY
=>;*** EOR *** - - -
=>; Compacts a date from DD/MM/YYYY OR MM/DD/YYYY to DD/MM/YY or MM/DD/YY - - Chris
Bonnici - Sept 1997
=>; Routine can only handle dates in the region 1950-2049. If an error occurs user will
be alerted.
=>; Null Dates will not generate an error but will return a null to calling module.
COMPDT(WHAT)=>N YYYY
=>Q:WHAT="" WHAT
=>S YYYY=$P(WHAT,"/",3)
=>I YYYY<l950!(YYYY>2049) D Q WHAT
=>.W !,"Cannot Compress ",WHAT
=>.R" Enter FULL date to pass to calling module ",WHAT
=>.Q
=>Q $P(WHAT,"/",1,2)_"/"_$E(YYYY,3,4)

Figure 1

38 M COMPUTING March 1998

There are two possible options:

a) A Windowing approach whereby all dates are
passed through functions that will expand the date
to Y2K and back on-the-fly. The algorithm would,
for example, assume all dates greater than 50 per­
tain to the 20th century, with the range O - 50
belonging to the 21st.

The library in Figure 1 does just that. There are two func­
tions that will expand and contract the dates on-the-fly.
The advantages of this approach are that there is no need
to expand dates, and there is no need to change the dates
in globals. The Y2K task simplifies itself quite a bit.

The price for such an approach is that there is a 100 year
date span limit. In a field such as a date of birth the pre­
sented solution will not function while a ''temporary solu­
tion" will probably complicate matters so much that it

-;.

would be more worthwhile going for a full conversion.
Another problem is that the use of such an intermediary
library might effect overall system performance. Anoth­
er point to note is that although it would be possible to
sort on dates when this process is done in a scratch glob­
al, it is impossible to have globals whose key fields are
YY dates naturally sorted (i.e., read these globals
sequentially using the $0 function).

b) A more permanent solution to the Y2K problem
is the one-time conversion to 4- digit years (well at
least until 9999). Such a task would necessitate more
work than solution (a), but does provide a more stur­
dy and long-term solution. Here are some sugges­
tions as to how this can be tackled in M:

• Change all human-readable dates in the database to
the internal $H integer date formats using vendor-sup­
plied routines. For example, Micronetics has %DI,

DTRTN=>;Date conversion library from $H to DD/MM/YYYY and back
=>;You use these programs at your own risk
=>;
TRIM(WHAT)=>;Removes Leading and Traiming spaces from the Parameter - ACB - Mar 1996
=>NI
=>S I=l F Q:$L(WHAT)=0 Q:$E(WHAT,I)'=" 11 S WHAT=$E(WHAT,2,$L(WHAT)) ; remove lead­
ing spaces
=>S I=$L(WHAT) F Q:$L(WHAT)=0 Q:$E(WHAT,I)'=" 11 S WHAT=$E(WHAT,l,$L(WHAT)-l)
=>Q (WHAT)
=>;*** EOR ***
=>;Converts a Date from DD/MM/??YY format to $H format - Chris Bonnici - Sept 1996
=>;With 2 digit Years, the program expands the remaining digits because the %DI rou­
tine will treat 00 as 1900 and not as 2000.
=>;It is assumed that in 2 digit year dates, if the date is< 50 it belongs to the 21st
century, else to the 20th.
INTDT(WHAT)=>N %DN,%DS,%ER,YR
=>Q:$$TRIM(WHAT)=""!(+WHAT=0) WHAT
=>S YR=$P(WHAT,"/",3)
=>Q:$L(YR)<l WHAT
=>S:$L(YR)=2 YR=$S(YR<50:"20",1:"19") YR
=>S %DS=$P(WHAT,"/",2) "/" $P(WHAT,"/7.",1) "/" YR
=>D A%DI - - - -
=>Q:$D(%ER) ""
=>Q %ON
=>;*** EOR ***
=>;Converts a Date from $H to DD/MM/YYYY format - Chris Bonnici - Sept 1996
=>;The conversion utility will not print the first two year digits if these are cur­
rent century. This has been catered for - Chris Bonnici - Oct 1997.
NORDT(%DN,LONG)dN %DS,%DA,%ER,YR
=>Q:+%DN=0 ""
=>D 400A%DO
=>S YR=$P(%DS,"/",3)
=>I '$D(LONG) Q ($P(%DS,"/",2) "/" $P(%DS,"/",1) "/" $S($L(YR)>2:$E(YR,3,4),1:YR))
=>I $L(YR)=2 s %NP="" D A%D s YR=$E($P(%DAT,"/",3),1~2) $P(%DS,"/",3)
=>Q ($P(%DS,"/",2)_"/"_$P(%DS,"/",1)_"/"_YR) -

Figure 2

http://www.mtechnology.org M COMPUTING 39

%DO and $ZDAIB that will tackle this task.

The library in Figure 2 can help with such a conversion.
The main problems associated with such an approach
are that such dates cannot go below 1841. Another prob­
lem (or if you look at it from a security aspect an
improvement) with $H dates is that dumping a global
will not give you readable dates. Some additional pro­
cessing may be necessary.

Routine NORDT is set so that it can return both CCYY
and YY dates. This feature has been implemented to
alleviate the task of changing reports during the first
pass. Once conversion of the permanent data is over
with, one can then focus exclusively on the reporting.

One minor benefit is that there will be an overall reduc­
tion in the size of globals. Also using a function means
the amount of changes that have to be made to programs
can also be reduced if dates within globals are converted
to normal format as soon as they are read into the pro­
gram and re-"re-integerized" exactly before they are writ­
ten out to the file.

•FILE("X:')="10/10/96''

"FILE("Y'')="10/10/97''

S DATE=•FILE("X')

C:
0 -~
~

S DAY=$P(DATE,"!',1) C:
S MONTH=$P(DATE,"!',2) 8
S YEAR=$P(DATE,"/',3)+1 ~

N
>-
~
.E
Q)

S DATE=DAY_''/'.._MONTH_''/'.... YEAR .0
S "FILE("Y'')=DATE

Figure 3

In Figure 3 we have the original program using the func­
tions presented here, one converts the dates to their "tra­
ditional" format as they are read.

Figure 4 shows that only two lines of the program need
changes.

It should be emphasized that (as in this example) pro­
grams must not be effected by a four, rather than a two­
digit year (for example using $E). If this is not the case,
additional changes would be required. It should be clar­
ified that input- and output-related issues will mean

40 At COMPUTING

•FILE('X-)="56896'

•FILE('Y')='57261"

S DATE=$-$NORDT'DTRnJ(AFILEf'X'))

S DAY=$P(DATE,'f',1)
S MONTH=$P(DATE,"f',2)
S YEAR=$P(DATE,"f',3)+1

S DATE=DAY_'f'_MONTH_'f' _VEAR
S ·'FiLE('Y")=$$:NTDT'-D'JT-ffN{DATE)

Figure 4

C:
,Q
~
~
C:
0
0
~
C\I
>-
1..
Q)

1ij

additional changes. This approach may result in ineffi­
cient programs, for example, when $H dates are read
into a program and converted to human-readable format
only to be converted back to $H again later in the same
program. It would be simpler to avoid both conversions,
but due to the urgency of Y2K, such matters should be
shelved until programs are toured again for code opti­
mization.

• Expand YY dates to YYYY. This approach is very sim­
ilar to the Windowing approach discussed above, the
only difference being that the changes are permanently
written within globals rather than converted on-the-fly.

Besides problems relating to increased year length (men­
tioned previously), problems specific to this approach
are:

• Globals will increase in size. This will result in
greater online / offline storage requirements
• Globals might have to be remapped if the maxi­
mum string length of the global entry is exceeded

• Create your own $H routine. This is only necessary if
the lower limit of the $H poses a problem. A library to
perform such a task is shown in Figure 5.

The routine CHKDT in this library is a simple check to
demonstrate that the algorithm converts dates accurate­
ly from integer to human-readable format. It hangs a bit
when the date is a leap year (allowing one to note the
date).

This can be seen as a more flexible implementation of
the $H functions. Other than that what has been said for
the standard date conversions applies here.

March 1998

CBDTRTN=>;Chris Bonnici's Date Conversion Functions.
=>;You are using these programs at your own risk
=>;This library addresses the lower limitation of the $H functions.
=>;This conversion will cater for dates between October 15, 1582 and November 25,4046 - Chris Bonni­
ci - Sept 1997
=>;Source: Hewlett-Packard HP-85 Standard Pac Manual
=>;Modified algorithm to handle and return certain leap year dates correctly.
=>;Converts a date passed as DD/MM/??YY to an integer
INTDT(WHAT)=>N DD,MM,YYYY
=>S DD=$P(WHAT,"/",1),MM=$P(WHAT,"/",2),YYYY=$P(WHAT,"/",3)
=>I $L(YYYY)=2 S YYYY=$S(YYYY<50:"20",1:"19")_YYYY
=>I MM<3 S YYYY=YYYY-1,MM=MM+13
=>E S MM=MM+ 1
=>Q $P(YYYY*365.25,".",1)-$P(YYYY/100,".",1)+$P(YYYY/400,".",1)+$P(MM*30.6001,".",l)+DD-478164
=>;*** EOR ***
=>;Converts a Integer Date to DD/MM/YYYY - Chris Bonnici - Sept 1997
NORDT(WHAT)=>N DD,MM,YYYY
=>S WHAT=WHAT+478164
=>S YYYY=$P((WHAT-121. 5) /365. 2425,".", 1)
=>S MM=$P((WHAT-$P(YYYY*365.25,".",1)+$P(YYYY/100,".",1)-$P(YYYY/400,".",1))/30.6001,".",1)
=>S DD=WHAT-$P(YYYY*365.25,".",1)+$P(YYYY/100,".",l)-$P(YYYY/400,".",l)-$P(30.600l*MM,".",l)
=>I MM<14 S MM=MM-1
=>E S MM=MM-13
=>I MM<3 S YYYY=YYYY+l
=>I MM=2 D
=>.I DD>29 S YYYY=YYYY-1
=>.I DD=30 S'DD=28 Q
=>.S:DD=31 DD=$$LEAPYR
=>.Q
=>Q ($S($L(DD)=l: "0", 1: ,,,,)_DD_" /"_$S($L(MM)=l: "0", 1: ,,,,)_MM_" /"_YYYY)
=>;*** EOR ***
LEAPYR()=>Q:YYYY#4>0 28
=>I YYYY#l00=0 Q:YYYY#400>0 28
=>Q 29
=>;*** EOR ***
=>;The loop below can be used to confirm that the two functions convert accurately, but be prepared
for a long wait until it reaches completion - Chris Bonnici - Sept 1997
CHKDT=>N I,DT,ERR
=>S ERR=0
=>F I=l00000:1:1000000 S DT=$$NORDTACBDTRTN(I) W !,I," ",DT D Q:ERR
H:+$P(DT,"/",2)=2&(+$P(DT,"/",1)>28) 1
=>.I $$INTDTACBDTRTN(DT)'=I W" error: ",$$INTDTACBDTRTN(DT) S ERR=l Q
=>.Q
=>Q

Figure 5

The author has used a COBOL version of these algo- time schedules, prioritization, and staff motivation, are
rithms for many years without problems although he has all part of the job description that will make Y2K con-
never had to deal with dates that are less than 1950. version a victorious task. Very soon we will be popping

Some sources are claiming that Y2K will spell doom for
the IT industry. Perhaps the opposite is true. We need
the IT industry now, more than ever, to deal with the
changes. And certainly change is nothing new. Changes
in regulations and new business approaches are what
make the business world go around .

We have always lived with deadlines (some of them being
. more of a deadline than others). This just happens to be
of the unshiftable type. The same solid business practices
that have brought us through other tough times will pre­
vail here as well. Good project management, realistic

http://www.mtechnology.org

the end of century/new century champagne mildly
cooled down to the right temperature. With proper
planning and hard work, we will have something to cele­
brate. Besides, the experience that many of us will get
won't be matched again for at least 100 years.

Some sites where you can find Y2K information (and
which were referred to by the author for this article):
http://www.year2000.com
htttp://software.ibm.com/year2000

There are many sites with Y2K information. A search
engine should provide much more information. M

M COMPUTING 41

Chris Bonnici is the MIS manager for The Malta Branch of Royal
Insurance. He is editor of M Web Magazine at http://www.mcen­
ter.com/mwm/ and writes regularly for numerous paper and elec­
tronic media. He can be reached at chribonn@keyworld.net.
His virtual office is at:
http://netopia.geocities.com/cbonnici.

The routines mentioned in this article can be downloaded from
http://www.geocities.com/Silicon Valley/7041 /dload.html. Your
thoughts and comments are welcome and may be used in anoth­
er article in M Computing.

NOTE: The programs in this article assume that the conversion
of 2-digit dates to 4 is based on the fact that all dates less than 50
belong to the 21st century with all others associated with the 20th
century. This must not be taken as a generic rule and different .sys­
tems must be first analyzed to check for the last date found in
19XX. If the conversion is of a permanent nature, this range
assumption will only be a one-time process.

MDC-What's Your Fair Share?

As the MDC moves M Technology toward the
millenium, it's looking for broader fiscal sup­
port from the M community. The M Technolo­
gy Association and the Department of Veterans
Affairs continue to be actively contributing
partners, and other organizations are renewing
or initiating a new interest in sponsoring
MDC's vital work.

MDC Chair Art Smith notes in this issue's
Questing column that the budget crunch is
tougher than usual this year-so tough that
MDC's "very continuation is in question."

MTA fully endorses the existence and work of
MDC as vital for M Technology's future. MTA
joins Art in encouraging you to consider what
your "fair share" could be, and should be, in
sustaining the MDC's-and M Technology's­
vitality.

Don't miss this opportunity ~ ..
to place your ad in the Annual Conference issue

of M Computing coming in June 1998.

Call MTA offices at 301-431-4070 for a contract
and ad rate sheet. Hurry, space is limited!

Contracts are due in MTA offices by April 30.
Ad copy is due by May 15th.

42 M COMPUTING March 1998

r
I

