
MANAGER'S FORUM

What is Optitnum?

by Don Gall

Introduction

A number of years ago, I heard a presentation from
a gentleman who had spent about 40 years working
in the fields of optimization and optimal design. He
made the statement that "anything is optimal, as
long as I get to decide the criteria used to determine
what is optimal." His comment seems to be a gener
alization of the "beauty is in the eye of the beholder"
theory.

Engineers and programmers, whether they under
stand it or not, are in the business of attempting to
create optimal designs. It is important to understand
that what is optimal to one person may be unaccept
able to someone else. How many "nearly perfect"
programs have you seen rejected by the first person
who attempted to use them?

It is also obvious that what is optimal at one time
may be entirely unacceptable at some later time. Try
selling a roll and scroll user interface today.

Let me place a disclaimer here. If you think that this
article will give you a methodology which will allow
you to take an application, run it through an algo
rithm that will return a numerical grade and then tell
you how to improve that grade, move along to the
next article in this journal right now. The goal of this
article is to get you to think about the positive and
negative ramifications that programming decisions
have on the application as a whole. The really good
programmers among you already do this and may
also move on to the next article. The rest of you
should keep reading!

Old and Modern Examples

Several centuries ago, the British set out to get tea
from India to London. The optimal design for the

16 M COMPUTING

containers was a cube. This minimized the amount of
tin needed to enclose a given volume of tea.
Although a spherical design would have used less tin,
the cost of manufacturing a spherical container
would have been excessive. The captains of the ships
hauling the tea might also have objected to having all
those balls of tea rolling around below decks. Thus,
the best trade-off was a cubic container.

Many years later, we walk into a supermarket to buy
Wheaties. Why are they now in these skinny rectan
gular packages? Cubic containers would save them
millions of dollars annually in the cost of cardboard
alone. However, the value in advertising for the big
frontal area outweighs the increased cost of the card
board. Thus, the optimal design is a skinny rectan
gular package. If the tree-hugging lobby starts a boy
cott of breakfast cereals in skinny rectangular pack
ages, remember that you read it here first.

And please don't ask me why tea is still sold in near
ly cubic containers. This is my story and I'm sticking
to it!

The OOHS Theory of Design

Back in the l800's Oliver Wendell Holmes wrote the
poem "The Deacon's Masterpiece," which reads in
part:

Have you heard of the wonderful one-hoss shay,
That was built in such a logical way
It ran a hundred years to a day?

For the benefit of those of you who live east of the
Mississippi, a number of us in the hinterlands of
Arizona continue to ride a hoss from time to time.
The poem tells the story of the Deacon's one-hoss
shay that ran perfectly and without repair for exactly
one hundred years and then totally disintegrated.

December 1997

The Deacon's One-Hoss Shay (DOHS) theory of
design is truly an optimal design.

In these more modern times, we have an automobile
that has oil that lasts 3000 miles, tires that last 30,000
miles, a body that lasts 6 years, an engine that lasts
150,000 miles and a driver that can only go 2 hours
between rest stops. On the other hand, we have been
able to create computer programs that the original
programmer never thought would last until the year
2000.

A more common, and usually less quantifiable, term
for the DOHS theory of design is "trade-off." How
much of result A are you willing to give up to get
more of result B? In most situations, we would be
happy if there were only two opposing criteria. More
often than not there are at least N such interrelated
criteria. In most cases, we would be sorely pressed to
accurately de~rmine the value of N.

In an earlier life, I worried a lot about ways to quan
tify a so-called optimal design. I was a college pro
fessor at the time, so you can guess what I did. My
personal optimal solution was to write a number of
papers about the subject so that I would be promot
ed!

The problem of attempting to quantify things that
are inherently not quantifiable can be expressed sim
ply as the problem of comparing apples with oranges.
Even though there is a federal statute that prohibits
doing this, you can compare them in a number of
quantitative ways:

• How many apples does it take to contain the vita
min C of an orange

• How many oranges or apples can you buy with a
dollar

• How many of your apples will you give me for my
six oranges

The answers to these questions depend upon many
factors. A few of these are:

• The variety of the apples and oranges in the example
• The time of the year
• The part of the country or what country we are in
• The particular store we are in
• Your personal preference for apples and oranges

http://www.mtechnology.org

The DOHS methodology suggests that we rank each
of the multiple criteria on a scale from 1 to 10, with
10 representing the best possible outcome. You then
ask the questions:

• From 1 to 10, how would you rank having a dozen
oranges

• How many apples would it take to produce the
same ranking

This tends to take the bartering element out of the
question, "how many apples will you give me for my
six oranges?"

A specific solution to a given design problem will
result in a ranking value for each of the design out
come criterion. The DOHS principle states that the
optimal design is one in which the rankings of all cri
teria are equal and that this resultant ranking is the
maximum for all sets that produce equal rankings.
This is not always possible. However, in many design
problems, it does provide a quantitative way to com
pare attributes that are difficult to quantify.

One of the more interesting aspects of this approach
is that it tends to become an iterative process. After
seeing the results of the process, the designer tends
to alter the ranking algorithm of one or more of the
criteria. In other words, having seen the results, the
designer changes his mind about what is really
important.

To the uninitiated, this may seem to be a stupid and
fruitless endeavor. However, as in many other areas,
the thought process change that is produced may be
more important than the quantitative results
obtained.

The following sections contain some real-world
examples from the software development industry
and attempt to show how the DOHS principle may
apply.

Functionality, Ease of Use and
the Ability to Implement

Three of the generic goals of an application are:

• Maximize the power or functionality
• Make it as easy to use as possible
• Implement it as simply and quickly as possible

M COMPUTING 17

In most applications, these three criteria are at odds
with one another.

One of the common complaints of almost any pro
gramming staff is that this new request from the
client will be very difficult to implement. This is usu
ally followed by, "Why do they insist on having it
that way?" and "It would be much simpler to pro
gram it this way." In some of these cases, we return
to the client with two proposals that both result in
the same functionality.· If we do it the way you pro
posed, it will cost you $4,000, but if we do it this way
it will only cost $1,000. This is usually a very effec
tive way to quantify a trade-off decision.

In other cases, we find the client's complaint, or sug
gestion depending upon how you look at it, will
serve to enhance our product. Although our imple
mentation cost may far exceed our charge to the
client, we may elect to do this recognizing that the
additional sales revenue will make us more money in
the long run. In this case, we have made the finan
cial trade-off decision.

At the MTA Meeting in 1996, one of the M imple
menters on a panel stated that if the M community
were willing to give up the $Order function, strange
hierarchical structures, the execute command and a
few other items, it would make the implementation of
M much simpler. The trade-off here was obviously
not apparent to the speaker unless he had already
found a job in a different industry.

Reusable Code

The concept of reusable program modules also has
its trade-offs. One advantage is that we need to write
and debug a module once. The. criterion of minimiz
ing implementation time gets a high ranking here.
A second criterion that we must look at is the issue
of performance. Will the use of-this module signifi
cantly decrease the performance? The ranking on
the performance criterion will depend on how well
the programmer writes the module and how it is
used.

Having the same or nearly the same blocks of code
scattered throughout your software makes it hard to
maintain. After a period of time, these similar
blocks tend to get out of sync as changes are made
to some but not all. Thus, a single, well-designed
function that is called by a number of routines is far

18 M COMPUTING

simpler to deal with and gets a much higher ranking
for maintainability.

Almost everyone has good examples of how
reusable code has been used in their applications.
The single best example of reusable code in our
OOP application is an inquiry function that gives us
encapsulation support. The function uses the data
dictionary that is an integral part of the definition of
a class to return values of attributes from that class
and may be called for any class in the application.
The function is called by:

SET OUTPUT= $$AUINQ(Class,
Attr_Suppl, Attr_Values, Attr._Req)

Where,
Class= the identifier for the

class containing the informa
tion

Attr_Suppl = the identifiers
for the required class attri
butes

Attr Values= the values of
each of the required class
attributes

Attr_Req= the identifiers
for the requested class attri
butes

As an example,
\...

SET OUTPUT= $AUINQ(~AC","CLN",1234,
"CLNAME~ZIPCODE")

will return the variable OUTPUT equal to the
Client's Name and Zip Code separated by the
delimiter tilda, '~ ,' given the Client Class, AC, the
Client I.D., Attribute identifier, CLN, and the value
of the Client I.D., 1234.

The only negative aspect of using this inquiry func
tion is that it requires more disk accessing and
therefore its overall performance is inherently slow
er than the equivalent M code that would have
directly accessed the global structure.

There are several positive aspects:

• Encapsulation is supported, thus changes to the
data structure of Class AC will not require changes
to the calling program

• The programming of the calling program is simpler

December 1997

• The implicit documentation of the function in the
calling program is clearer

• The Windows version of our software can populate
screens very simply by a call to the same function

This example of reusable code causes us to sacrifice
some computer performance in exchange for
enhanced maintainability and decreased program
mer time. This one function decreased the program
mer time required for our Windows product by
about 4 man-months.

There are so many examples of programs that have
underutilized reusable code that there is no real rea
son to add any of ours to the list.

Is it possible to get too carried away with the con
cept? Of course! Let us now look at an example of
too much use of reusable code. A number of years
ago, I saw an application which contained a subrou
tine for printing a number on a report. Over a peri
od of time, this subroutine became more and more
complex with the addition of the ability to round the
value, to print round, square, angular or curly brack
ets around the value and a number of other ideas
that various programmers thought were "cool." The
programming staff had been thoroughly indoctrinat
ed about the virtues of reusable code and used this
subroutine religiously. One particularly lengthy
report with about eight columns of dollar values took
about four hours to produce using this subroutine
for each printed value. Replacing each of the sub
routine calls with a simple M expression to write the
value right adjusted with two decimal points reduced
the running time to under an hour.

I have seen a subroutine in which the only M code
was:

Read !,"Enter> ",X Q

No more need be said about this example.
Between the obviously good examples and the obvi-

ously bad examples are some questionable exam
ples. When we began the development of our Object
Oriented Programming application about 5 years
ago, we decided to have an extrinsic function that
would return the date for display or printing in a uni
form format. The function accepted a date in
YRMODA format and returned it in a MO-DA-YR
format. The performance would have been
improved had we used the $E (DATE, 3, 4) _:_• -
" _ $E (DATE, 5, 6) _:_' _,, _ $E (DATE, 1, 2) shown
in most M texts. However, using the extrinsic func
tion completely eliminated the Year 2000* problem
for our application.

At one point, we began development of a general
ized update function similar to the inquiry function.
This would allow us to update data in any class from
any other related class. It became apparent early on
that the function was going to become so complex
and its performance so miserable that its use would
not offset the decreased programming time that we
would have gained. Thus, we abandoned this other
wise "superb" idea.

Redundant Data in a Database

For the purposes of this section, let me define redun
dant data as one or more totals that could be
obtained by adding or counting entries in the data
base. An example is the total amount owed by a cus
tomer which could also be determined by adding up
all of the unpaid invoices.

This is a surprisingly controversial subject. The
RDBMS purist insists that having redundant data in
a database is never acceptable. Most of us have seen
the results of this philosophy as the computer chums
through a large volume of data to determine the cur
rent balance in a checking account. The perfor
mance ranking for accessing often-needed informa
tion for these systems is not good.

The major advantage of redundant data is to provide

* As a Y2000 aside, we do not use $Extract functions to get the year, month and day. Instead we use:

Day = DATE#lO0
Month = DATE\100#100
Year = DATE\10000 + 1900

In our application, the day following 991231 (12~31-99) is 1000101 (01-01-2000). At some point in the 21st century, people will want to see
dates that appear as 03-15-02 instead of 03-15-2002 and 09-12-1997 instead of 09-12-97. We will need to change only one extrinsic function
to accomplish this throughout our system.

http://www.mtechnology.org M COMPUTING 19

rapid access to totals or counts which would otherwise
require substantial computations or data accessing.

There are three disadvantages of having redundant
data:

• Hardware or software failures can cause the redun
dant data to no longer agree with the primary
source of these data

• Additional programming is necessary to ensure
that the redundant data are maintained

• Additional programming is necessary to verify that
the redundant data are correct

We have all seen systems in which reports from dif
ferent sources produce different results.

When should an application have redundant data?
Our rule of thumb is that if the end user has the need
to repeatedly get at specific summarized information
that would otherwise require a great amount of com
puter time and resources, we should provide this
information as redundant data. We feel that a good
example is our Summarized General Ledger Class
that contains both the General Ledger Chart of
Accounts and a summary by year and month of the
beginning and ending balances and the activity by
journal for each account. Our clients have immedi
ate access to both the current balances and activity in
every General Ledger Account as well as for prior
months and years.

We have a single extrinsic function used by all of the
journal classes to update this class. (Another plug for
reusable code.)

As a bad example, we maintain a number of working,
billing and income statistics by the combination of
seven to nine different parameters because we were
assured by a number of our clients that they would
use this information all the time. Having ignored the
fundamental programmer axiom of not believing
anything that is preceded by the words all, always or
never, we implemented this idea. We pay a large
price for maintaining this structure and find that our
clients almost never use it. It will disappear in our
next software version.

20 M COMPUTING

Summary

Whether you are designing an entire application, a
module in that application or one program in a mod
ule, your goal is to create the best design that you
can. The issues of functionality, ease of use, modu
larity, performance, maintainability and adaptability
to future requirements must always be considered at
every level of the design. In general, these present
the designer with conflicting criteria. But that is the
very essence of design. If it were not for the need to
make good trade-off decisions, everyone would be a
great designer.

In many ways, writing computer software is a unique
and challenging occupation. It is part mathematics,
part science and part art with a whole lot of logic
thrown in. The structures, concepts and expectations
are changing so rapidly that it is impossible to keep
an entire application on the leading edge. It is amaz
ing how often I look at a program written two or
three years ago and ask, "what blithering idiot wrote
this?" Then, I see my own initials at the top of the
program.

For some reason, I doubt that Goethe ever read one
of his earlier works and said, "Welcher geblitheriner
Trottel hat das geschrieben?" \;.; M

Don Gall is CEO of Omega Legal Systems in Phoenix, AZ and a

member of the MTA Board of Directors.

MTA Nominations Open
1998 Board of Directors

Open two-year positions:
Chair
Executive Director
Two At-Large Seats

See page 27 for more details.

December 1997

