
FEATURE ARTICLE

Bottollls Up!
Why Top-Down Design may be a Waste of Time, Part II

by Erik Zoltan

l
n many ways, the implementation phase is the most
·nteresting and exciting part of the development
process. For it is during implementation that vague

promises must be backed up with specific lines of code.
And it is during this phase that unexpected twists often
occur, which can result in great improvements to the
application's overall design. The cliche that "hindsight is
20-20" reflects the fact that design work is often different
the second time around. The bottom-up approach exploits
this fact by integrating design and coding into a single,
unified process.

In Part I of this article (available at www.esitechnology.com),
I outlined the benefits of bottom-up design, advancing the
claim that traditional top-down design techniques are dan
gerous'ly vulnerable to costly mistakes. In this part, I will
show a real application in which the bottom-up approach
was successful, thereby lending support to my earlier claims.

Principles of Bottom-Up Design

As outlined in Part I, the bottom-up design process has
the following steps.

• Analyze the problem domain in detail, without a solu
tion in mind.

• Create a "thumbnail sketch" of your proposed solu
tion with some of its major components.

• Consider alternatives, and develop a certainty analy
sis of the components.

• Implement the most certain design element.

• Revisit the top-level sketch, and flesh it out in more
detail before implementing the next part.

Creating a Report Generator

In my example application, the problem was to create a

8 M COMPUTING

report generation tool in Windows that could talk to an
M global database. The long-term goal was to migrate
the database to a native OOM format, but the short
term need was to create a report-generation tool for
Windows users. EsiObjects™ (''Easy Objects") was
chosen for this project because it is an M-based
Windows development system that provides a flexible
set of tools for object-oriented implementation and
many aspects of the bottom-up design process.

The M global database consists of medical information
centered around a patient file. The most important
reports include patient and prescription data, but it
should be noted that many different files will eventual
ly be included. At present, only the following files are
included. The arrows indicate pointer relationships.

Drug

Prescription Patient Prosthesis

Physician

Figure 1

The user needs to be able to specify the target file and
to select the fields for the report, as well as the sorting
fields. A more detailed query engine is planned for the
future.

Design Sketch

Time was of the essence when the project was first start
ed, since there was a commitment to use the system as an
in-class exercise in only two weeks, and the development
team consisted of only one programmer. A quick thumb
nail sketch of the application looked as follows:

October 1997

Windows
Application

Report
Engine

Figure 2

..
Database M Global
Objects Database

In Figure 2, the arrows indicate the direction of mes
saging. My first guess was that the application would
interact with some kind of report generation object that
would produce the report. The user could utilize the
application to specify the details of the report. The
application would provide this information to the
report generator, which would query the file for the
appropriate records, which it would then pass back to
the application for display or printing purposes.

".'\

Encapsulation is an important principle of object ori-
ented systems. Basically, it means that each object is
responsible for its own internal data, and it forces
external objects to obey a specific protocol when inter
acting with the object. But the use of M globals pre
sents a problem, since access to the data in M globals is
not restricted-any routine (or any object, in an QOM
system) can modify any global.

For this reason, part of my thumbnail sketch was to cre
ate a series of "database objects" to represent the infor
mation in the M global. This was also in keeping with
the long-term migration to objects that was part of the
project's initial specification.

Certainty Analysis

The design is never truly finished until the project has
been fully implemented, so each component of the ini
tial thumbnail design sketch is subject to a certain degree
of uncertain_ty. There are four major components of the

Windows
Application

Report
Engine

Figure 3

http://www.mtechnology.org

Database
Objects

M Global
Database

thumbnail design, and each one has a different level of
uncertainty (See Figure 3).

Two things seemed relatively clear at the start of the
implementation process. First, the legacy globals had
been around for years, so there was no doubt about the
global structure. The application requirements were
already on paper, although one could foresee that they
might change as the project continued to evolve beyond
the "proof of concept" level.

Of all the components needing to be implemented, I
was most certain of the database objects for two rea
sons:

• They represented the information in the globals,
which was already well-defined.

• They would provide services to other objects and not
vice-versa.

For these reasons, I decided to tackle the database
objects first.

The database objects simply mirror the structure of the
database globals (see diagram below). There is a file,
and each file contains a number of entries. The file
may also use indexes to sort the entries in different
orders. For example, an oversimplified patient file
might contain information about any number of
patients, sorted by Name and SSN. (In reality many
more indexes are used.)

Patient File

Sort by

Name

Sort by
SSN

Patient 1

Patient 2

Patient 3

Patient 4

Figure 4

For this reason, I decided on three basic kinds of
object. There would be one kind of object to represent
the information in a single file, and another kind to
represent the information in an entry (patient or pre-

M COMPUTING 9

scription). Finally there would be a sorting object. The
"file" object would respond to queries for entries and
would somehow contain a large number of "entry"
objects. I decided to have a separate class for each kind
of entry and to have a single class to represent the
information in all the files. I postponed the question of
sorting for later.

I decided to start with the prescription entry object,
since the file object was too high-level and the patient
entry object contained a multiple pointer (prosthesis),
which I wasn't certain about.

Implementation, Part I

It was still day one of the project, and I was already
writing the first lines of code! The database objects
seemed fairly straightforward, at first. The require
ments of reporting meant looking up data, but not
modifying it.

a--~ Wrapper
1$1 il;l DateVVrapper
~--filiii EntryWrapper

$-Ila Drug
m--1111 Patient
$11!1 Physician
iii €i!l Prescription

Figure 5

According to the project requirements, I only had to
support a few of the fields in the prescription file. I
quickly created a prescription object and a property for
each field. In testing the object, I noticed that several of
the fields (patient, drug, physician) were pointers to
other files, and that one field (date issued) was a date.
These fields returned raw data (pointer numbers and
raw date fields), so I modified my design. The class tree
in EsiObjects is shown in figure 5 above. At first the
class-structure was flat; later I used drag-and-drop to cre
ate the hierarchy shown above. This is another illustra
tion of the bottom-up style.

This required me to do some extra work-I had to cre
ate objects for the physician and drug files and a special
date object to represent a raw date value. These changes
took longer than expected, so I only provided one or two
properties for each of the new objects. I figured I could
always go back and flesh them out later, as needed.

It might seem odd to make a special kind of object just
for dates. But the raw date form was not easy to under-

10 M COMPUTING

stand, and the date object supported operations like
"Short Date," "Long Date," "Month Name," etc. This
makes it easier for every other object in the system to
work with date fields, as the following sample code illus
trates.

Standard M Approach

SET RAWDT=$PIECE (APRE (IEN, 0) ," Aff, 6
SET LONGDT=$$LONGDATEADTCONV(RAWDT)

EsiObjects ™ Approach

SET Scrip=PrescFile.Entries(IEN)

SET LongDate=Scrip.Dateissued.LongDate

(Note how much more self-documenting the second
approach is.)

On day two the prescription object was completed: I
was able to create a prescription object, tied to an entry
in the prescription global. When I asked it for the drug
prescribed, it returned a drug object, representing an
entry in the drug file. When I asked for the prescription
date, it returned a date object, which supported opera
tions like ShortDate (''Aug 15, 1997"), LongDate
("Friday, August 15, 1997") and HVal (representing the
raw $H, e.g., "57205," sometimes useful in interval cal
culations).

The next task was the patient object. It had its own date
field (DOB), so I simply re-used the date object I had
created for the prescription file. It also had a multiple
field prosthesis, which contained a pointer to the pros
thesis file. I decided to represent the multiple property
as though it were an array of prosthesis objects. This
took further time to implement and ultimately required
a new kind of object to represent sub-file entries.

Design Modifications

Having implemented some objects, I decided to revisit
the initial design sketch. I now realized that I would
need to develop a broad strategy for managing rela
tional jumps between files, and that this strategy would
affect both the user interface and the communications
between the remaining objects.

I decided to flesh out the report process in a little more
detail. Ignoring the application itself, I focused on the
interactions between the report generator and some
other objects.

October 1997

Report . I @ Open

Device ~- ®
File

_-::-:,

© Create

{j)
(I) Sort

Report
Generator

© Get Property, Create

Entry
@ Cre~te

Sort List

Figure 6

I decided that' a ReportGenerator object would be
responsible for driving the reporting process.

1. The Report Generator opens a Report Device object
to manage output.

2. It then creates a temporary File object to represent
the global database.

3. It asks the File object to sort its entries and gets back
a Sort List.

4. The File may need to perform sorting, or may be able
to use an index in the global. Either way, it sets up the
Sort List to provide the objects in the right order.

5. The Report Generator repeatedly uses the Next Entry
method to obtain an entry from the Sort List.

6. The Sort List responds to the Next Entry method by
creating an Entry object to represent a single entry in the
file (e.g., a single patient's data).

7. This entry is then added to the Report Device.

8. The Report Device subsequently queries the entry for
the properties in the report. Each property value is
placed into an output column of the report.

9. The Report Generator closes the Report Device, end
ing the report.

http:/ /www.mtechnology.org

By the way, I made a critical design error at this stage. I
overlooked the fact that multiple fields would have an
impact on the top-level design. It seems obvious now,
in hindsight, but the approach outlined above simply
doesn't work.

The problem: later on, I noticed that sorting by a multi
ple field caused the same object, with all of its multiple
sub-entries, to appear too many times in the report. The
bottom line was that I later had to re-design the top-level
report process. But since the most critical sections of code
had not yet been written, the impact of these changes
was quite limited.

Continuing Implementation

Without dragging the reader through the entire imple
mentation process, here is a summary of the remaining
steps:

• The file and sort list objects had to be implemented.
The file permitted sorting by any field (indexed or not),
so it provided the one-time service of sorting all entries
in a new way, if needed.

• The report device organized output into columns, for
display on any kind of device (terminal window, printed
page, scrolling window, etc.)

• The report generator coordinated the top-level report
process by integrating all the other objects. It drove the
entire reporting process.

M COMPUTING 11

• The report generator, file, and report device had to
be enhanced to allow multiple fields.

• A problem with multiple fields (mentioned above)
necessitated a re-write of the report generator and
enhancements to several other objects. However, sur
prisingly little code was lost-in most cases new fea
tures were added without removing old code.

• A code review yielded the comment that some of the
methods were too large. They were broken down into
smaller modules. This resulted in significantly greater
clarity and reusability.

• The front-end application was not part of the demo
and is still unfinished. When complete, it will make the
report generation process much more intuitive. I was
actually surprised that the application was developed
last, but in hindsight it makes sense.

Conclusions

This project caused me to draw the following conclu
sions:

• It is very freeing to admit you don't know what the
final application will look like. It really takes the pres
sure off.

• When unexpected things happened, they seemed
more like opportunities than threats.

• I never got the feeling that the application was a
"prototype." I think most of this work would still be
useful in a full-blown system.

It is important to note that this example, like most case
studies of the design process, is not conclusive. It is
nearly impossible to develop a fair comparison of two
competing design approaches, because there are so
many variables to control. Nonetheless, the bottom-up
design approach mirrors the evolutionary development
path of many real-world systems.

The bottom-up approach succeeded in this case and was
fun to use. If this is the case, then why devote a huge
amount of time to a rigorous "design phase?"

Modern systems are becoming too complex for top
down design to be useful much longer. Imagine trying
to flowchart the human brain. It would take thousands

12 M COMPUTING

of years, and where would you even begin? Instead of
trying to hide our own ignorance, we should warmly
embrace it. Instead of pretending to know all the
answers, we should be constantly vigilant for innovative
new ideas. Instead of trying to design the solution
before writing any code, we should begin by imple
menting the most well-defined parts of the problem.
Rather than trying to develop a grand scheme that
anticipates everything in advance, we should always
maintain a flexible approach that will maximize future
reusability. Instead of starting at the top, we should
start at the bottom, and work our way up! M

Erik Zoltan teaches subjects including M and EsiObjects Programming
for ES/ Technology Corp. Visit www.esitechnology.com or send e-mail to
ezoltan@esitechnology.com.

Coming Soon!

MSources, your Membership Directory
and Resources Guide

The successful placement of M/MUMPS
programmers at all levels has been our

exclusive business for over 6 years.
We place in both Contract and Permanent

positions, Nationwide.

Our service is:

Consistent, Professional, Up-to-date

Please contact Cecile Marlowe

(800) 600-3506 Career Professionals Unlimited
Fax: (619) 755-3066 424 Stratford Court, Ste. A32

E-Mail: jobs@cpumumps.com Del Mar, CA 92014

Browse our Website at:
http://www.cpumumps.com

October 1997

