
THREADS

Coding Satnples

Contributors: Dan Baer, Gary Baanstra, Ben Bishop, Scott Jones, Greg Kreis, Michael L. Poxon, Jim Self,
Kevin Smith, and Leane Verhulst with editing and introduction by Valerie 1 Harvey, Ph.D.

Introduction

Online discourse is an important realm for exploring
technical topics. As I promised earlier in the year, I

want to include in M Computing a better interface to the
interesting technical interchanges that take place on the
Internet and at Web sites. To initiate this I have selected
some topics from recent M-List traffic and have sought
a format that will treat a collection of excerpts as a con
tribution to M Computing. This approach will provide
some print recognition to those who take the time to
share their technical insights and engage in such discus
sion. (My ulterior motive: I would like to encourage
eventual technical article contributions to be published
in M Computing from some of these folks!).

For this issue the thread topic is "coding samples." The
thread focuses on editors used in programming and on
routine format and style. There is a useful treatment of
handling the dot syntax in nested looping. Editor's notes
are enclosed in square brackets []. Some minor editori
al changes and corrections have been made. The opin
ions expressed here are not necessarily the opinions of
the MTA or even of the other contributors!

Format is a challenge in delivering a thread of online
technical discussion. Threads are conversations-even
the initial segment here refers to a preceding conversa
tion. They have elements of "parallel distributed pro
cessing" -parts of the conversation go on independent
ly (thus three "sub"-threads here). It is difficult to find
an appropriate "linear" arrangement for this mode of
presentation. I think it is important that more M users
have contact with those who are exchanging technical
ideas and that the authors get credit and acknowledge
ment in print. The representation of the "thread" inten
tionally has a different appearance from the full inter
twining and embedding of the internet exchanges-each
contributor is acknowedged as separately as is feasible
for ideas and expression. The result is at the same time
far less formal (given the conversational tone and cross
references between posts) than a technical article.

26 M COMPUTING

(1) Editors, Colors, and Rules

Jim Self: The M syntax-driven coloring that an editor
like MDesktop provides can make this and many other
errors/features of your source code stand out and be
much more obvious. For instance, I generally set the
background color on comments, quoted strings, and dot
level indicators to make them noticeably different from
other text.

If you haven't yet seen this editor or experimented with
background color settings, I think you will be amazed at
how much more readable they can make your code.
Language features jump out at you that you might oth
erwise have to look at for awhile to discern.

Dan Baer: I sure do miss my MDesktop editor. It really
impressed me after using it. I don't use it for my share
ware product, since it doesn't use InterSystems products.
The editor I'm stuck with now is extremely archaic
black & white, no jumping to line labels, it doesn't even
tell you what row or column you're on.

Greg Kreis: I wonder if "Slick Edit" or some other uni
versal editor might be useful? I have been hearing some
coders (in C+ +, Java, etc.) talk about their favorite edi
tors. Some of them I believe have "modules" that you
can plug in to make the editor "aware" of the rules for
what it is editing. So if we were to get someone to write
an "M rules module," we might find some common
ground. Anyone here ever heard of these kinds of uni
versal code editors? [These are mentioned by Scott
Jones. See comments below.]

Scott Jones: Actually, I'm using one-Epsilon from
Lugaru Software. Check out http://lugaru.com to get an
evaluation copy. The latest version, currently in beta
test, allows you to edit files stored on ftp or http servers
directly. Pretty nifty. The colorizing code is VERY sim
ple to modify and is very fast (The editor keeps track of
"safe" places that your colorizer has said that it can
always start colorizing). The default interface is based on
Emacs-but it is totally customizable. I've written an

October 1997

t

t

"M" colorizing module. I've been thinking about mak
ing Epsilon connect directly up to a Visual M server so
that it could directly edit routines stored in M datasets
(Right now it automatically detects that "OpenM" mode
should be used for *.inc, *.mac, *.rtn, *.ro, *.urp, and
*.rsa files) but I haven't had any time to do so! I'd also
like to make it do full syntax checking in the editor.
(Right now I've got it so that it knows which are ANSI
commands, functions, and special variables, as well as
ISM/DSM/DTM Z commands, functions, and special
variables.)

Kevin Smith: There is an excellent product called
Code Wright by Premia! This editor is awesome and has
the capabilities you mentioned. As a matter of fact, I
have been developing an M plug-in for this product that
would cover all the ANSI parts of M. By the way, you can
get a trial copy of CodeWright from http://www.pre
mia.com Of course, one downside to this method is that
you must export your routine, edit it and then import it
back into M, but that is how it works on the VAX under

"" DSM so I am used to that.

(2) Loops, Dots, and Indenting

Michael L. Poxon:
[snip]

F S SORT=$Q (@SORT) Q: SORT=""
Q: $QS (SORT, 1)' =" SORT" DO

[snip]
(and to be honest, I don't know if the Q : so RT="" is
redundant or not) It has not been redundant in any
implementation I've seen and is certainly a minor irrita
tion. I think having two QUI Ts on the same line is ugly!
I wish short circuit logic applied to ORs the way it does to
ANDs-that is, if I've got IF exprl ! expr2 and exprl
is true, expr2 is not evaluated-that way, we could at
least write:

Q: SORT="" ! ($QS (SORT, 1)' =" SORT")

I guess the difference is that if an AND short circuits, the
whole rest of the line is ignored so syntax doesn't matter.

Ben Bishop: ANDS don't short circuit. Multi-argument I Fs
will short circuit, but that is the nature of the language (i.e.,
it explictly states that where "COMMAND ARGl, ARG2" is
allowed, it is equivalent to "COMMAND ARGl COMMAND
ARG2") so "IF A, B" is the same as "IF A IF B" which
is not quite short circuiting. IF A&B will evaluate B if A is
false. A rather simple fix to the original problem might be
to define that $QS (name, index) will return null for any
"index" where "name" is null.

http://www.mtechnology.org

Greg Kreis: Here is another way to write this code.
Mostly it is a style change. I find I can read code easier if
the looping is separated from the code that you perform
"once you have arrived." Also, with several dots to be
put on each line, it is easy to miss by one. If you have a
line with two that should have three, then the lines with
three dots after it are orphaned, never to be performed.
No error is reported with this kind of subtle bug.

Ben Bishop: I find that I rarely (if ever) miscount dots
for indentation on a multi-level FOR loop; the coding
makes the need for the new dot level plainly obvious (I
try to start all such FOR loops with the FOR being the first
command on the line).

Leane Verhulst: I also rarely miscount the dots. I find
that if I use a "dot space"(.) combo, it really makes the
dot structure stand out and makes it easier to see where
it starts and ends. I also try to keep the line of code to 80
characters. Yes, I know that it is "wasted space," but I
find it easier to read and therefore easier to maintain.
(What! Maintenance?! What maintenance?)

As for separating out the code that is performed "once
you have arrived," it depends a lot on what I need to do
and why. If it is just a quick calculation not used by any
thing else, then I will keep it within the dot structure
(and then I don't have to hunt for the tag). If it is some
thing that could be "callable" then I will put it as a sepa
rate tag. In other words, it is a very subjective thing.

Ben Bishop: Without substantially rewriting Greg's
"PRINT" function [not included here], I submit my
attempt:

TAG ;a tag in my program
NEW SORT,ID
S SORT=$NAME (/\TEMP(" SORT~'))
F S SORT=$Q(@SORT) Q:SORT=""

Q: $QS (SORT, 1)' =" SORT" DO
S ID=$QS(SORT,4) ;could also use

$QS(SORT,$QL(SORT)) for the last
I ID]"" D PRINT (ID) ;print one

patient's information
Q ;all done

PRINT(ID) ;print information for one
patient/ID

<snip>

Leane Verhulst: $NAME, $QS, and $QL are not in the
version of M we are running. And I doubt if I would use
them even if they were. In my opinion, the code is hard
er to read (and therefore harder to maintain). I also try

At COMPUTING 27

to stay away from indirection. It gives me a headache!!

A note about NEW. I also try to use the NEW command at
the beginning of each tag. I just forgot to include it in this
example. I also put the variables that I am going to NEW
in alphabetical order. That way it is easier to find the
variable in the list, especially if there are a lot of vari
ables. For example, I have a large list of variables, and
part of my list is: BCODE, CNT, CNTALL, CNTNEW,

DONE. I now need to add the variable CNTBAD. I can see
at a glance that CNTBAD is not being used, and I quickly
add it to the list: CODE, CNT, CNTALL, CNTBAD, CNT

NEW, DONE. I also avoid multiple NEWS within a tag.

Gary Baanstra: Actually, one thing I've always pondered
on and never really came out with anything concrete is:
at what point should you (if ever) stop indenting your
code and create a call to a subroutine? This pretty much
applies to any language. I've found at around 4 or 5
[indents] it gets hard to look at and usually call to a sub
routine, although this would seem to run the program
slower (albeit slightly).

(3) Tag Names, Case, Dots, and Spacing

Jim Self: Scott Jones wrote some very interesting com
ments from his own rules of M coding style which,
although largely different from the others I have seen
here, appear to be internally consistent.

Scott Jones: [Some of Scott's rules (1, 2 and 9) are
referred to by Jim Self]

(1) All commands are spelled out in title case (i.e., first
character upper, the rest lower).

Jim Self: [Regarding Scott Jones' Rule 1] Since M does
not distinguish the case or long/short form of commands,
intrinsic functions, pattern characters, etc., do what you
wish, anyone can easily change it to their own prefer
ence, if only on output, as needed. I personally find
MUMPS (including your example) easier to read with
these in the lowercase short form.

Scott Jones: Ah-but since I always keep variable names
all lower case, the mixed case for commands makes them
easier to read-more like a sentence.

Set thearray(l)=thevalue

(2) All external tags are in mixed case starting with a
non-% character, and all internal tags are in mixed case
starting with % .

28 M COMPUTING

Jim Self: [Regarding Scott Jones' Rule 2] My own pref
erence for the use of mixed case in line tags is to capital
ize the first letter of a tag intended for external use and
lowercase it for internal use. I don't use % in tag names.
If a tag is the concatenation of multiple words or abbre
viations, always capitalize the first letter of each but the
first.

Scott Jones: I simply prefer having the name consistent
ly mixed case and just add the % if I deem that the func
tion is private (internal) for now. If I need to change it
to public, it seems easier to me to find it and just remove
the %'s. Your [Jim's] method also works, and the choice
is mainly a matter of personal (or shop) preference.

(9) Use a space between .'s [dots]. It is easier to see the
number of levels. Given the amount qf traffic recently
about people consistently having a problem when intro
duced to M because M is different from most other lan
guages (Note I didn't say that it was better or worse!), it
seems prudent to plan for new support programmers not
knowing M at first having to maintain whatever I write.

Jim Self: [Regarding Scott Jones' Rule 9] Remove all
spaces next to .'s to guarantee that the nesting level is
clearly reflected in the position of the characters. I have
encountered subtle errors that arose from a little extra
white space between dots that were several levels deep
and confused the nesting level of the affected lines.
Again, this is one of those details which make no differ
ence to the operation of your program a--s long as there is
consistency.

Scott Jones: Yes, the important thing is consistent spac
ing no matter WHAT the language.

Jim Self: I strongly encourage the use of a source code
filter to guarantee that all routines in a given shop con
form to a single standard, whatever it is.

Scott Jones: Given the amount of traffic recently about
people consistently having a problem when introduced
to M because M is different from most other languages
(Note I didn't say that it was better or worse!), it seems
prudent to plan for new support programmers not know
ing M at first having to maintain whatever I write.

Jim Self: My impression is that most other languages are
different from most other languages so that one would
often encounter this same level of problem or worse in
learning a new language. I believe that one should
expect new programmers to read the manuals, or at least
the language reference materials, and that the simplicity

October 1997

,.

"

of the left-to-right rule for operator precedence would
cause it to be one of the first features to really stick in
one's mind. However, recent examples show that doesn't
always happen.

Scott Jones: Well, most all of the ones that I have used,
except for RPN (HP) calculators, Lisp/Scheme, APL
and M are pretty consistent. I really did mean "most"
other languages (at least in this one area of expression
evaluation). This is one area where they are pretty much
the same.

Think about it-C, C++, Java, FORTRAN, COBOL,
PL/1, any non-HP calculator, Rexx, Perl, BASIC, Pascal,
Algol, Ada, ... all are basically the same in the order of
expression evaluation. The list of languages that are
NOT the same is rather few, and none of them are the
same as any of the others.

Jim Self: On the other hand, if a new programmer knows
only one or tw,Q other languages, they are probably C
and BASIC, so one could argue that special considera
tion should be given to accommodating that particular
bias.

Scott Jones: As I said above, it isn't just C and Basic-by
any stretch of the imagination (think of all those non-HP
calculator users)-I'd say 99% of programmers expect
the order of evaluation to be a certain way and are sur
prised when they come up against M. At least with RPN,
Lisp/Scheme, and APL. It doesn't even look like a valid
expression so there is less room for confusion. .M

-Valerie 1 Harvey, Ph.D.

Dan Baer
Gary Baanstra
Ben Bishop
Scott Jones
Greg Kreis
Michael L. Poxon
Jim Self
Kevin Smith
Leane Verhulst

mtrc@mcenter.com
gbaanstra@MDSMETRO.COM
aci@shore.net
scott@intersys.com
gkreis@mindspring.com
Michael.L.Poxon@kp. ORG
jaself@ucdavis.edu
kjsmith@AJRMAIL.NET
lverhulst@NMFF.NWU.EDU

http://www.mtechnology.org

Advertiser Index

We appreciate these sponsors of the October issue
and all the companies who support the M communi
ty through their commitment to excellence.

Career Professionals Unlimited 12
CyberTools, Inc. 29
ESI Technology Corp. 33
George James Software, Ltd. 5
Henry Elliott & Company 1

Cover4
InterSystems Corporation 7
Kaiser Permanente 31
KB Systems, Inc. 33
Micronetics Design Corporation Insert
Nathan Wheeler & Company, Ltd 33
Oleen Healthcare Information Systems . . . 33

This index appears as a se,vice to our readers. The publisher does
not assume any liability for errors or omissions.

CyberTools for Java
The only l 00% realtime
interactive M-Web solution.

Build Once For:
♦Web
♦ Microsoft Windows
♦ Character Terminals
♦ Flexibility for Your Future

If you're a M expert,
you're now a webmaster
with CyberToolSe

For more information
or a trial license:
www.cytools.com
or call 978-772-9200.
@1997 C)be!Tools. lnc. All trademarl<s are acknowledged.

.M COMPUTING 29

