
FEATURE ARTICLE

Multiuser and Multidevice M Training
Techniques

by Valerie 1 Ha,vey, Ph.D. and Lynne R. Cuda, MC.S.

Multiuser Learning and Dynamic
Interaction

Although information systems served by M Technology
are typically multiuser, multidevice installations, most
instructional techniques for those learning Mare orient­
ed toward a single-user experience. There are a number
of properties of M Technology which are difficult to
demonstrate in a single-user learning situation, such as
locking, the shared nature of global arrays, traversal of
database structures under conditions of active database
change, control of multiple devices, and multitasking.
The techniques in this tutorial have been used success­
fully in training personnel with little or no background in
M.

Using this approach, the learner spends time in dynamic
interaction with a multiuser environment from the very
beginning. This interaction helps the learner develop a
clear sense of the multiuser environment and thus apply
and serve the M Technology system more effectively.
Suggested exercises and lessons deal with shared data,
concurrency control, application design, background
jobs, device control, distributed processing, and the prac­
tical requirements of teamwork in information technolo­
gy.

This approach can be particularly effective in re-training
programmers who have experience with other program­
ming languages, since it emphasizes some properties of
the M environment that are valuable and convenient to
use (See Chapter 19 of Walters, sections on features of M
present in a few, but not many, other high-level languages
and features rarely found in other programming lan­
guages). Practices similar to particular techniques pre­
sented in this article were incorporated into certain M­
user organization employee training programs years ago,
but were not combined into an overall multiuser, multi­
tasking instructional strategy. For example, Kent Frazer's
design for Rubicon employee training in the early 1980s
included a final exercise in which all the trainees worked
online together to produce a single application.

22 M COMPUTING

References in this paper are keyed to the major resources
currently available and published textbooks up-to-date
with at least the 1995 M standard.

Sandwiching - Two Modes of Learning at
Once with Multiple Threads ,

The technique of "sandwiching" (from the instructional
viewpoint) is proposed here-addressing multiple
threads of objectives simultaneously. For example, while
particular exercises and structures or syntax are being
treated explicitly, the environments are being used to
provide learning about multiuser environments (concur­
rency control), alternative models of multiuser system
implementations, device and network properties, team­
work in development, testing, and implementations, etc.

The experiential learning is accomplished by inserting, at
intervals and in conjunction with the a~ivities planned,
explanations of what to observe or what should have
been observed and the reason for the importance of this
experience. Thus the learner experience seems natural,
flows well, benefits from repetition, and does not seem
more stressful, demanding, or compressed than would be
required for a single-thread presentation mode. Simple
requirements of advanced topics are introduced at the
earliest possible point. For example, a number of simple
exercises are designed to terminate by checking a partic­
ular global for a value, rather than by prompting the user
for input. Thus learners gain familiarity with a control
strategy needed for use of background jobs. When back­
ground jobs are used, they will already know how to
assign global values in order to terminate or otherwise
control a background job. They will also have examples
of how $GET can be used to check for a value while using
a reference to a global variable that might not be defined.
This manner of terminating routines also encourages use
of the two-workstation setup, since the "message" to
stop iteration can be "sent" from one station while the
routine is executing on the other.

Exercise and demonstration routines provide the learn­

October 1997

l

ers with examples of certain kinds of M programming,
ranging from use of the $ORDER function to variation of
natural language output. Demonstration routines are
purposely kept as simple as possible to invite easy inspec­
tion to see how syntax is used and how the routines work.
Learners should also be encouraged to use the $DATA

function to check for the existence of variables in appro­
priate circumstances (For a good treatment of the $ DATA

function, see Gerum's article). This action can be
prompted by questions from the instructor like, "Do we
know whether the variable "A has been defined?" A
learner using one station can check a global variable in
use by a partner at the companion station.

Implementation

This approach to learning M requires simultaneous
access to two complete workstations (two keyboard
/screen combinations). Implementation can be carried
out in various ways:

--:\

• A single PC with dumb terminal on serial port
• Two PCs connected serially, one serving as a terminal
• A client/server system
• Two workstations (terminals) on a multiuser system

There should be access to at least two UCis (User Class
Identifiers or M Directories) on each console or termi­
nal. Certain of the exercises commonly used for the
multiuser approach can be simulated using a single
screen, especially in a Windows environment, but the
impact seems to be greatest with simultaneous use of two
keyboards for most exercises described here.

Single-UC! and Multiple-UCI Models

Elementary objectives can be handled effectively while
using only a single UCI, while more advanced learning
situations can exploit access to multiple UCis. The fol­
lowing categories of exercises can be addressed with
access to the same UCI on both screens:

• Multiuser access to globals
In order to demonstrate the shared property of global
variables, a single global variable, such as "VALUE, could
receive values on one workstation while a simple loop
displays the current value of "VALUE on the other screen.
Such informal practice might involve execution of the fol­
lowing:

(Console) FOR WRITE 1 ,"ENTER VALUE: " READ

"VALUE

(Terminal) FOR WRITE "VALUE," "

http:/ /www.mtechnology.org

After the entry loop has been run a few times, and while
the display loop continues to run, the learner could be
asked to interrupt the loop and kill "VALUE. The display
loop will, of course, be interrupted with a sudden "unde­
fined" error. Experienced programmers, accustomed to
dimensioned, dense arrays in other languages, benefit
from practice with manipulation and traversal of sub­
script sequences in M arrays. Several properties of arrays
and their associated traversal functions need attention:
the array as a sparse matrix representation, hierarchical
structure, undeclared bounding under dynamic condi­
tions, treatment of the set of subscripts at a given level in
an array as a linked list, the standard subscript collating
sequence, the use of <null> ("" or null-string) as a con­
ventional header pointer for the dynamic linked list rep­
resentation and how to express design of a global array
for M database purposes. A series of demonstration rou­
tines is made available to learners for open-ended prac­
tice as follows.

(1) The simplest routine LOWHIGH checks the bounds of
subscripts at the first subscripting level of global "z
through the expressions $ORDER ("z ('"')) and
$ORDER ("z ("") , -1) . Possible example responses are:

(a) with no subscripts:
"THE LOWEST SUBSCRIPT IN "Z IS: ARRAY EMPTY"

"THE HIGHEST SUBSCRIPT IN "Z IS: ARRAY EMPTY"

(b) with one subscript 16:
"THE LOWEST SUBSCRIPT IN "Z IS: 16"
"THE HIGHEST SUBSCRIPT IN "Z IS: 16"

(c) with more than one subscript, as 77 89 201 900:
"THE LOWEST SUBSCRIPT IN "Z IS: 77"

"THE HIGHEST SUBSCRIPT IN "Z IS: 900"

The impact of SETs (such as SET "Z (6) ="") or KILLs

(such as KILL "z (21)) at one station can be observed on
the other display. If an instructor is present, subscript val­
ues can be suggested to guide the practice, extend the
bounds of the set of values, and provide insights regard­
ing the collating sequence. Exercise suggestions can be
provided for learner use. Although loops or routines can
be used to control the set of subscripts, it is likely better
for the learner to become accustomed to the M SET and
KILL command syntax and the impact of execution of
these commands. Of course, as in (lb), with only one sub­
script, the values given for lowest and highest are the
same.

(2) The next routine in the set is LOMIDHI, which reports
as follows:

M COMPUTING 23

(a) with no subscripts
"ARRAY "Z IS EMPTY - NO SUBSCRIPTS"

(b) with one subscript 35
"THE ONLY SUBSCRIPT IN "Z IS 35"

(c) with two subscripts -4 and 701
"THE LOWEST SUBSCRIPT IN "Z IS -4"

"THE HIGHEST SUBSCRIPT IN "Z IS 701"

(d) with more than two subscripts, such as 17 62 133
"THE LOWEST SUBSCRIPT IN "Z IS 17"

"THERE IS AT LEAST 1 SUBSCRIPT BETWEEN 17 and

133"

"THE HIGHEST SUBSCRIPT IN "Z IS 133"

(3) The third routine in this set is LOMIDHI2, which dif­
fers from LOWHIGH in the case where more than two sub­
scripts exist in the set:
"THERE ARE 2 SUBSCRIPTS BETWEEN 65 AND 1004"

This routine counts the subscripts between the lowest
and highest values and also varies the natural language
(IS vs. ARE and singular vs. plural), depending on
whether one or several subscripts are present between
the bounds. After "play" with arrays and these routines,
learners should examine the routines and make sure they
understand how the routines work and ask about any syn­
tax for which the meaning is not clear.

• Local vs. global variables
The difference between local and global variables can
also be emphasized by having a pair of participants check
local and global variables at their respective stations.

• Multiuser application with two different parts of appli­
cation active at the same time (on the 2 screens)
A pair of demonstration routines RETAIL and RETAILM

are used for this purpose. RETAIL provides the opportu­
nity to specify an account number and enter charges or
payments. RETAILM serves as a monitor that reports on
transactions (as in a central office) that are occurring.
Thus RETAILM reacts to use of RETAIL. Learners see how
two different parts of an application execute concurrent­
ly, performing their respective functions with respect to
the same global array. This application incorporates a
logging of all RETAIL transactions. Although invoked as
a separate routine, the structure of RETAILM also antici­
pates the design of background jobs.

• Multiuser application with locking
The RETAIL routine demonstrates locking and can be
executed concurrently on both stations for this purpose.

24 M COMPUTING

Unlike a production routine, which endeavors to lock
resources for the shortest time possible, this routine is
designed to make the impact of locking obvious. Two •
partners working together are encouraged to access the
same account number at the same time. One receives a
notice that the account is "in use." An action (such as
entering a charge or payment) at the station which
acquires and then holds the lock releases the lock on the
shared global, and a lock on that same global is then
immediately acquired at the other station, where the rou­
tine has tried to lock that same global. At the instant that
the charge or payment is entered on one screen, there is
a reaction on both screens, and the new balance shows up
on the other screen. Learners are encouraged to play
with this routine and examine its code. With regard to
locking, see Walters (pp. 254-259, 272), de Moel (pp. 45-
46), Marshall (pp. 46-47), and the Melnick/Burack arti­
cle.

• Single application controls 2 screens
Demonstration routines and open-ended practice can be
used to gain understanding of how to control two or
more devices within a single thread of execution. This
e~ercise category requires making one of the stations
available to be acquired as a device by the other.
Learners find out that when a user is logged in at the
other station, it cannot be acquired as a device, and that
once acquired, the other keyboard is inactive (unless the
programming at the first station offers read access). The
use of multiple $IO values, OPEN, USE, and CLOSE can
be practiced through interactive prograhnning as well as
by having the learners design their own applications.
Demonstration applications serve as models for learner­
designed applications. For device handling, see Walters,
Chapter 13.

• Background job control where the background job runs
a screen
A pair of demonstration routines (SCHDCNTL and SCHD­

DI SP) simulate an airline schedule display system. SCHD­

CNTL, executed at one station, controls the display on the
screen of the other station, starting and stopping it, and
providing for entry and updating of flights to be displayed.
The display routine SCHDDISP is invoked with the JOB

command as a background job, and thus can continue to
run even if SCHDCNTL is stopped (there is a provision not
to halt the display) and the station is used for other pur­
poses. This application can serve as a model for a number
of learner-designed applications. With regard to multi­
tasking, see Walters (pp. 253-254), and de Moel (pp. 44-
45).

• Debugging and global access
Learners working singly or in pairs can look at a global on

October 1997

one screen as a routine is being debugged at the other
station.

• Monitoring system to check transactions or changes in
a global
This was incorporated in the RETAIL application
described above.

The following categories of exercises can be addressed
with access to a different UCI on each screen:
• Practice with global protection and access, using utili­
ties provided by the respective system vendor
• Practice using extended syntax for globals (syntax which
specifies environment); see Walters (p. 250), de Moel
(pp. 247, 295), and Kirsten (Section 5.3.2, pp. 105-108)
• Simulate journaling or logging in a different UCI (see
Kirsten, Section 6.5.1, pp. 141-143)
• Practice with replication and translation; see articles
listed below for additional information
• Practice with fragmentation of global (as in distributed
environment; ~e A Turano's article on this and also
Kirsten, Section 6.5.2, p. 144)
• Simulate distributed processing

Examples and Summary

Exercises should be designed to encourage the learners
to exploit the multiuser M Technology. Here are some
example exercises:
• Enter on one screen and display results on the other
screen (minimums, maximums, averages)
• Voting system, with control and results on one screen
voting booth on the other screen
• Point of sale (grocery store, hardware store, depart­
ment store)
• Banking (ATM) simulation
• Various kinds of display systems, along the lines of the
airport flight display system described above

With appropriate models at hand, multiuser applications
can be readily designed. Structured learning experiences
alternate with open, unstructured practice in which the
learner answers individual questions with guidance and
support from the instructor(s). Learners with prior expe­
rience using other languages, who might otherwise focus
on differences in syntax and just on programming, readi­
ly acquire a sense of M as a programming system and of

· its database properties. They gain facility in using the
multiuser capabilities of M systems to help them solve
practical problems of application development and
debugging. After developing a better intuitive sense of
the global array and the role it plays in M Technology,
they are ready to address global design issues which are

http://www.mtechnology.org

vital for effective and productive use of the technology.
Work in pairs, especially for beginners with no prior pro­
gramming experience, facilitates progress in most cases.
In general, this approach encourages open exploration of
the M environment. M

References

de Moel, Ed. M[UMPS] by Example. MT, 1997.
Emery, M. A and J. A Pierson. "Using Global

Replication in Application Development." MUG
Quarterly 18, 1 (1988): 67-71.

Gerum, Winfried, "Do You Know All About $DATA?"
MUMPS Computing 22, 4 (1992): 18-20.

Gould, David Allen. "DSM Global rranslation." MUG
Quarterly 20, 1 (1990): 94-99.

Kirsten, Wolfgang. Von ANS MUMPS zu ISOM
Technologie: Fortgestrittenes Programmieren in M
Epsilon, 1993.

Marshall, Rick. The 1995 Standard M Pocket Guide.
MTA, 1996.

Melnick, Jerry, and Ruth-Ellen Burack, ''Avoiding
Database Contention," MUG Quarterly 20, 1 (1990):
87-93.

Turano, August M., "Managing Large Global Structures
Through Segmentation," MUG Quarterly 19, 3 (Fall
1989): 35-39.

Tweed, R. L., and J. Milan, ''A New Approach to Global
Replication Between Processors," Proceedings of
MUG-Europe (1984): 43-47.

Walters, Richard E, M Programming: A Comprehensive
Guide. Digital Press, 1997.

¼llerie 1 Harvey, Ph.D., is a professor at Robert Morris College in
Pennsylvania and the executive editor of M Computing During this sab­
batical semester, Dr. Harvey is a visiting scientist in Dynamic Systems at
the Software Engineering Institute of Carnegie Mellon University. Write to
her in care of MTA 's managing editor or email to:
harvey@.robert.morris.edu

Lynne R. Cuda has a masters degree in computer science form Texas A &

M University and is Coordinator of Computer Applications for the
University of Florida Faculty Group Practice (FGP). She manages appli­
cations, support, and programming for the FGP billing Junction.

M COMPUTING 25

