
FEATURE ARTICLE 

Is Top-Down Design a Waste of Tiine? 
Is Bottoin-Up Coding Faster? 
by Erik Zoltan 

It is widely agreed that object oriented (00) designs tend to 
become more stable as they mature, because objects are so 
much more reusable than subroutines. Objects are actually 
strengthened when they are subjected to new requirements. By 
contrast, traditional procedural programs tend to encounter dif­
ficulties when asked to fulfill tasks for which they were not orig­
inally designed. The bottom-up design approach exploits this 
advantage of 00 systems by integrating the tasks of design and 
coding into a single unified process. 

Part I :-'.\ 

This is intended to be the first of two articles on object ori­
ented design. In the first part, I will try to stand traditional 
structured programming principles on their collective head 
by arguing in favor of bottom-up design. I will point out 
some of the strengths and weaknesses of the two competing 
methodologies, and will end by drawing the paradoxical con­
clusion that even a mostly-wrong bottom-up design is better 
than a mostly-right top-down design, because bottom-up 
designs are more self-correcting. The second part, to be pub­
lished later, will contain more specific advice on how to cre­
ate a good bottom-up design. The first step in the process 
involves creating several competing "rough sketches" of the -
system, and selecting the least-controversial components to 
implement first. This provides valuable information that 
makes the rest of the design process easier and less risky. 
Part II will then present some more concrete examples of 
this implementation strategy using an OOM development 
system called EsiObjects(tm) ("Easy Objects"). 

Principles of Top-Down Design 

• Develop a large-scale concept of the system before 
getting too detailed 

• Finding the "correct" design makes it easier to write 
the code 

• Solve all the problems on the drawing board before 
you start programming 

• Little of value is learned during implementation 

What's Wrong with Top-Down Design? 

The software design methodology I learned in college could 

http://www.mtechnology.org 

be summarized as follows: "Always design your programs 
starting with the highest-level components first. Begin with 
a general picture of what the program does and break it 
down into smaller and smaller subroutines, until each sub­
routine becomes easy to write." This top-down approach 
makes a great deal of sense for_a number of reasons. First, it 
encourages modularity and simplicity. A programmer who 
has been thoroughly indoctrinated into this approach 
becomes much less prone to the dangers of producing 
unreadable "spaghetti" code. Second, whenever something 
truly difficult presents itself, you can just create a subroutine 
for it, and worry about how it works later. Often the prob­
lem will seem much less troublesome when you tackle it in 
isolation. Third, it may improve performance in the long 
run, since procedural modularity means that each subroutine 
can be optimized separately without necessarily affecting the 
others. Finally, the top-down approach can even make it 
possible for many programmers to work together on a prob­
lem: just give each one a well-defined subtask, after clearly 
describing any interactions that will be necessary between 
them. 

~ 

Top Level 
Design 

Fig. 1 Traditional top-down design methodologies are said to be 
the basis of procedural programming. 

However, there are some clear drawbacks to the top-down 
approach. The most obvious of these is brittleness. Very 
often, when one is "down in the trenches" coding some sub­
routine, it suddenly becomes obvious that a completely dif­
ferent approach would have been better. For example, the 
parameters that have been passed in don't convey enough 
information, necessitating absurd complications that could 
have been avoided with another approach. Or it turns out 
that several different subroutines need to perform redun-

M COMPUTING 9 



dant calculations in order to fulfill their supposedly "dis­
crete" missions. Such discoveries may ultimately require 
large parts of the program to be redesigned. Some experi­
enced top-down programmers will tell you to write the pro­
gram, then throw it away and rewrite it twice: on the third 
draft you will (hopefully) have finally gotten it right. Hence 
the concept of "prototyping." The prototype is, among other 
things, a useful throw-away version from which to learn. 

Another side of the same coin is that it becomes harder and 
harder to add new features. Many years ago, for example, I 
was asked to add a seemingly "simple" cut-and-paste feature 
to an old MUMPS routine editor. (It was still called 
MUMPS in those days.) It turned out that this feature 
affected all cursor migration operations, which now needed 
to support the possibility of highlighting the selected text. 
The entire editor had to be re-written from scratch, even 
though the initial design seemed to work fine. However, the 
re-designed editor was never put into service, because addi­
tional design changes caused further problems. A second 
rewrite from scratch was out of the question, and the first 
rewrite had gradually become unstable. We had to face the 
painful prospect of using the initial "no frills" version with all 
of its drawbacks. 

Another drawback of the top-down approach is that it some­
times impedes pe,fonnance. At the top level, one is frequent­
ly insulated from the sort of implementation details that can 
make a real difference in terms of execution speed. By the 
time implementation actually occurs, the wrong decisions 
may already have been made. For example, one top-down 
design I created early in my programming career suffered 
from unacceptable performance problems. Despite exten­
sive efforts at optimization, this elegant program ran almost 
one hundred times slower than a rather ugly public-domain 
version for which source code was available. Examining the 
PD code revealed a more efficient low-level strategy so 
"obvious" it made my jaw drop. Once again, it seemed easi­
er to start over from scratch, because the top-level design 
was now obsolete and the PD version was riddled with many 
"quirky" programming practices. 

Top Level 
Design 

Fig. 2 If design flaws are present, they are most likely to emerge 
during the implementation process. 

10 M COMPUTING 

The bottom line is as follows: the traditional top-down pro­
cedural design methodology works well as long as your initial 
design is correct, and unexpected new features will not later 
require extensive re-design work. Unfortunately,procedural 
programs tend to become less stable over time, as more and 
more enhancements are inevitably required. 

How is it, then, that the best "top-down" procedural M pro­
grammers are able to create high-performance code that 
doesn't eventually become unstable? Presumably they can 
somehow produce better designs in the first place, because 
they are able to clearly visualize the low-level components as 
they are designing the high-level ones. In other words, by 
virtue of their ability and experience they are able to design 
with both the top-level and the bottom-level details in 
mind-they're really designing "from the edges" towards the 
middle. In addition, they may instinctively design in certain 
kinds of flexibility, so that future enhancements will not 
cause too many problems. That's not really much different 
from the approach being advocated here, it's just too hard 
for "the rest of us"-the majority of programmers who get 
headaches from trying to visualize such grand schemes in a 
purely abstract way. 

In some ways it's useless to talk about top-down design 
because nobody really ever does it anyway, just as we never 
wrote out all those flowcharts, back when doing that so was 
popular. It takes much too long to thoroughly design the 
entire thing before you start typing code! Neither program­
mers nor their managers are patient enough to wait around 
for extensive design work. Something il\us rebels against 
doing it the slow way, and we rush to our Keyboards for the 
comfort of typing code, in much the same way that an impa­
tient child cannot resist biting into a Tootsie Pop to get at the 
tasty center. 

Principles of Bottom-Up Design 

The difference between top-down and bottom-up design is 
like the difference between a dictatorship and a grass-roots 
movement: 

• A bad design is easier to produce than a good one-never 
assume that your design is correct; 

• Always start working on a tough problem at its weakest, 
most critical point; 

• The implementation process can yield valuable new infor­
mation relevap.t to the overall design; 

• Therefore, design and implement the most obvious 
components first; 

• Later you can synthesize these components into a 
vision of "the big picture." 

August 1997 



You Mean, Start at the Bottom? 

To many people, designing from the bottom up seems ridicu­
lous at first-somewhat like reading the text of this article 
backwards, starting with the last paragraph. Thu may not 
accept the idea of bottom-up design if you don't believe the 
claim that the most costly design flaws are those uncovered dur­
ing the implementation process. This claim makes a great deal 
of sense to me, because it is precisely during implementation 
that vague promises must be backed up with specific lines of 
code. It also makes sense because it agrees with my not­
infrequent experience of stopping in the middle of a routine, 
muttering under my breath, and suddenly deciding that 
lunch time has arrived! 

Partial 
Design 

Corre 
? } Component I ? 

~~~ 

Fig. 3 Bottom-up designers first design and implement the most 
critical components they know will be required. 

Like top-down structured programming, the object oriented 
(00) approach also emphasizes modularity. A system is 
broken down into a number of different objects, each having 
a clearly-defined area of responsibility. But unlike subrou­
tines, objects represent groupings of logically-related data, 
along with all the. relevant code to operate on that data. A 
much-touted advantage of objects is that they represent eas­
ily-understood real-world entities, and that by grouping the 
relevant code along with the data upon which it operates, 
they make it easier to assign blame when problems arise. 
(Ideally this should be correct, but in practice it depends on 
the quality of your 00 design, so please read on ... ) 

In 00 systems, there is no need to map components of the 
problem domain into data structures and procedures. 
Instead, you begin by creating objects that look like the 
things in the problem domain, and then find sensible attrib­
utes and behaviors for these objects. The procedural interac­
tions between objects flow naturally from their collective needs 
and responsibilities. 

The top-down designer says, "this is what I somehow want," 
while the bottom-up designer says, "this is what I can effec­
tively achieve." 

In many M systems, the closest thing to an 00 design is the 
data dictionary. The data dictionary is emphatically not 

http://www.mtechnology.org 

object oriented, but it does describe the layout and organiza­
tion of data in the system, and it also links this data to cer­
tain components of related program code for tasks like input 
validation and indexing. If you think of each file as a collec­
tion of objects, all having the same type, then you will have 
made a good start. A true 00 system introduces a number 
of new concepts that go far beyond the data dictionary. But 
imagine creating the data dictionary first, and designing the 
rest of the system entirely around it, and you will have a pre­
liminary idea of the 00 design process. 

When Problems Arise 

Two primary pitfalls arise when highly-trained top-down pro­
cedural programmers try to design 00 systems. The first is 
procedural, and the second is top-down. First, there is a ten­
dency to procedurally modularize the code but not the data. 
This can result in one kind of object where two would have 
been better. It can also result in object A performing oper­
ations that ought to be the responsibility of object B. 
Second, there is a tendency to perform a top-down design of 
the entire system, all in one go. This produces an unneces­
sarily complex design containing many mistakes, resulting in 
time-consuming redesign that could have been avoided by 
starting out more simply. ESI President Terry Wiechmann is 
fond of saying that learning 00 design requires "brain 
surgery." 

Imagine that you have fully designed a system, and that the 
design is flawed in some way. The flaws will generally reveal 
themselves in one of three ways: 

• They may become obvious while contemplating the 
finished design, 

• They will most likely become obvious when the design 
is being implemented, and 

• They may only become clear much later on, when 
unexpected new features need to be added. 

By the way, note that most design flaws become apparent in 
steps 2 and 3, during the implementation process. In the top­
down approach, we may have to go back to the drawing 
board when these flaws become apparent. But what if cer­
tain well-defined components of the system have been par­
tially implemented before the overall design has even been 
finalized? Will the final design become clearer after these 
objects are already in place? Can a bottom-up design 
methodology result ina highly-flexible set of generally-useful 
objects that are certain to become part of the final design? 
Might this not minimize the possibility that serious design 
flaws would be uncovered during implementation? Is such a 
thing even possible? 

The answer to all of these questions is a resounding YES. 
Sometimes one tends to get stuck in the assumption that one 
single design is "correct." However, there are generally 

M COMPUTING 11 



many different ways to envision a system, and there are usu­
ally several competing designs that could serve the purpose. 
For example, there's the simplest-possible design that would 
match the current specs, and there's a more complex, fully­
specified design that would include future needs. Beyond 
that, there may be several competing designs that work dif­
ferently, and the choice among them is sometimes just a mat­
ter of style. And most importantly, there are some just-plain­
wrong designs that somehow always tend to look much better 
to us at first. In bottom-up design, it is important to humbly 
admit how little you know about the best possible design. 
The less you think you know, the better. 

One good way to achieve this "uncertain" state of mind is to 
make rough sketches of several competing designs without 
choosing among them. Common to all these designs, there 
will generally be a central core of uncontroversial things that 
you do know you will definitely need. If several competent 
programmers are voting by secret ballot, they will probably 
disagree on some portion of the design, but they are certain 
to agree on the "easy" part. And that's the place to begin. 
In bottom-up design, one gets to start by implementing a few 
simple well-understood components of the system. 

Always Attack the Weakest Point 

In a system to translate French into English, for example, 
you might begin with an object to represent the contents of 
a French language text file containing the source text, and 
this object might provide services like returning the text of a 
single word, sentence or paragraph. Of course, you could 
start by implementing objects to represent the nodes in an 
augmented transition network or maybe the parse tree, but 
"Why attack a lion when there is a lamb in the field?" 

The first objects to implement are generally those that pro­
vide services rather than requiring them. For example, you 
should develop data-level objects before user-interface 
objects to display and modify them. General-purpose 
objects often come before highly-specialized ones, and small 
component objects before the larger-scale objects that will 
contain them. 

After implementing some of the best-defined elements of 
the system, you can then look back at the competing design 
options with a greater degree of information. At this point, 
some flaws may already have become obvious, and a few 
fuzzy ideas should now seem a bit clearer. Always struggling 
to resist the dangerous temptation to revert to top-down 
design, you can still continue to find the most obvious things 
to work on. 

Finally it becomes necessary to select from among the com­
peting design options identified earlier. At this point, it is a 
good idea to spend some time fleshing out the design you 
have decided to choose. This is the riskiest phase of the bot­
tom-up design process, and the most important thing is not 

12 M COMPUTING 

to avoid mistakes, which is impossible anyway, but to make 
them as late in the process as possible, while at the same 
time identifying and correcting them as early in the process 
as possible. 

In Part II of this article, an actual system will be created 
using botto!Il-UP design. EsiObjects(tm) was chosen because 
it is an M-based Windows development system that provides 
a great set of tools for object oriented implementation, and 
many aspects of the bottom-up design process. 

If a designer is capable of producing a flawless design from 
scratch; then any design approach will work. However, it is 
my opinion that an imperfect bottom-up design is better 
than an imperfect top-down design because the top-down 
approach leaves you vulnerable to time-consuming redesign 
when the flaws are finally uncovered. Bottom-up design, 
though counter-intuitive to some, minimizes the amount of 
time you spend going down blind alleys. This is achieved by 
making mistakes later in the process, rather than earlier, and 
by trying to correct them more quickly once they have been 
made. Central to this strategy is the observation that critical 
design mistakes are most frequently uncovered during 
implementation. To be continued... M 

Erik Zoltan has been programming, writing, and teaching in the M com­
munity for the last 7 years. He is now also teaching EsiObjects TM program­
ming classes for ESI Technology Corporation in Natick, l\1A. 

\,. 

The difference between 
problems and solutions. 

> M Application Development 
> Year 2000 Modjfications 
> :Expert Technical Support 
> Telephony Application Development 
> Legacy Software Support 
> Upgrades 
> Interfaces 
> Data/Platform Conversions 
> GUI Application Development 
> and much, much more. 

F~~~ment I 11] ~ I 
Inc. 
~, J~~ fe1' U<f>~ rzni.~-,f:aqJl4ctk 

561.362.4477 
DevP artner@aol.com 

August 1997 


