
MANAGER'S FORUM

Some Things Never Change

by Don Gall

Introduction

In the fall of 1995, the Mechanical Engineering
Department at the University of Illinois Urbana
Champaign decided to have an open house and luncheon
for former graduates in conjunction with the homecom
ing football game. At the last minute, the TV network
covering the game decided to move the time of the game
to get better coverage. This, in turn, caused all of the
plans for the ~partment open house to be moved to a
time later in the day.

About 6 P.M. I went to one of my former professors who
had organized the event to explain that I needed to leave
because my mother, who was 89 at that time, would be
worried if I did not get back to her house around the time
she was expecting me. You need to understand that I was
60 years old, married, with 4 grown children and had not
lived at home in 39 years. His reply was "Well, some
things never change."

Old (really old) Computers and their
Limitations

My first experience programming computers was on the
original ILLIAC computer at the University of Illinois in
1956. It was a first-generation programmable computer
with paper tape input and output. It had 1024 words of
vacuum tube memory and a huge 12,800 word drum stor
age unit. The ILLIAC terminology always referred to
words. In today's terminology, it would be called a 40 bit
byte. The 40 bits allowed a word to have a precision of
about 12 decimal digits which was adequate computa
tional accuracy for a computer of that era.

A program instruction consisted of two hexadecimal
instruction bytes and a 10 bit address which was needed
to uniquely locate each of the very large number (1024)
of words of memory. Since a program instruction took
up 18 bits, two instructions were combined in a single
word with four bits left unused. The hexadecimal char-

http://www.mtechnology.org

acters that were used were not as we know them today.
Apparently, there were many World War II Army tele
types available in that era. Thus, a few of these teletypes
became our off-line input and output devices. The keys
that you pressed to produce the standard four bit hexa
decimal hole patterns that we got to know and love were
the numbers 0 through 9, and the letters K, S, N, J, F and
L, which we remembered from the phrases King Size
Numbers Just For Laughs or Kind Souls Never Jostle Fat
Ladies. We now have 0 through 9 followed by A, B, C,
D, E and F. (I can only remember this unusual sequence
if I think of Always Buy Chicken, Don't Eat Fish which is
not nearly as funny as the previous two!)

The execution times for a number of the program
instructions are of historical interest. To move a word
from memory to a CPU register took 55 microseconds.
To add two registers took 90 microseconds. To read a
word from the paper tape took four milliseconds. To
punch a word in a paper tape took 17 milliseconds.

The drum storage system made 1 rotation every 16.9 mil
liseconds. Because of this relatively long interval, ran
dom access was not something anyone even thought seri
ously about. Serial reading and writing was the only
method used. Even so, the maximum rate to read or
write was 1.32 milliseconds per word. This meant that it
took 24 (1320 / 55) times longer to read or write from
the drum than from memory if we did it serially. It would
take 154 (8450 / 55) times longer if we had not done the
drum accessing serially. In 1956, CPUs were very slow,
but drums were significantly slower.

About 20 years later, minicomputers had progressed to
provide us with 64 KB of memory with transfer rates to
the CPU in the 10 microsecond range. The disk drives of
the era had mean access times of 80 milliseconds. This
meant that it took 8,000 (80,000 / 10) times longer to
read and write from the disk than from memory.

We now have PCs with 200 megaHertz CPUs and disk

M COMPUTING 13

drives with 8 millisecond access times. This means that
we can move over 1 million bytes from memory while we
do a single disk access. Everything has gotten a whole lot
faster, but the relative cost in time of using the disk has
gotten much higher over the years.

Is there a point here someplace? I certainly hope so! In
the "old days," a programmer worked very hard to
reduce the number of disk accesses his programs made in
order to produce user-acceptable software. With the
advent of faster and faster computers with larger and
faster disks, there has been a tendency to not worry about
disk accessing so much. On the contrary, we need to con
tinue to worry about it. Some things never change!

How do we minimize disk accessing? Let us add a little
more history before proceeding with that issue.

The Evolution of M[UMPS] Systems

The M[UMPS] systems prior to the introduction of the b
tree file structure had, by today's standards, very restric
tive global file structures and a very limited amount of
data which could be stored at any global node. In these
systems, one-and-two-dimensional globals (e.g.,
"'GLB(LEVl) and "'GLB(LEV1,LEV2)) worked very
well and three-dimensional globals worked well if they
were designed properly. Anything above three dimen
sions tended to chew up vast amounts of disk space which
was not something you wanted to do in an era when 10
megabytes of disk cost over $10,000. In this early
M[UMPS], the indexes (e.g., LEVl and LEV2) had to
be positive integers. These early M[UMPS] systems could
not store a data string with a maximum length greater
than about 75 characters at any global node.

In spite of what now seem to be serious limitations, a lot
of programmers produced a lot of good software that was
functionally far superior to software developed in other
programming languages. But, they produced that soft
ware using integer indexes with· a small amount of data,
sometimes only one field, at a global node.

The transition to ANSII Standard M removed these old
limitations, but did data structures change? For some
developers, the newly found freedom led to a complete
rewrite of the software and global file structures. Other
developers, who either did not see the need or who
thought the cost to be too high, continued on with the old
structures. Those that did not change now find that map
ping these structures to a Relational Data Base Model is
either extremely difficult and time-consuming or impossi
ble.

14 M COMPUTING

The M literature and the M sessions at the annual meet
ing seem to emphasize writing good M code. Not much
attention is paid to creating efficient data structures.
Both good code and good structures are essential for an
efficient and responsive system.

There was a time when M could compete with other lan
guages and methodologies because the development
time in M was more than one order of magnitude faster
than with these other languages and technologies. One
of my favorite quotes from James Martin is, '½. language
should not be called fourth-generation unless its users
obtain results in one-tenth of the time as with COBOL,
or less." 1 With the introduction of improved Rapid
Application Development tools, the M community must
move forward soon or risk losing this dyvelopment time
advantage.

At the risk of alienating members of that M community,
let me state the following:

The ability to provide efficient data clustering using multidi
mensional arrays is the most significant advantage that M
now has over other data base management 'languages or
methodologies.

It is my contention that since this is a major advantage, it
is therefore very important that we maximize that advan-
tage to the fullest. \;:,c

It is possible to write a DBMS in M which completely
adheres to the RDBMS model. If, in the implementation
of this structure, M stored its tables in the same way that
most RDBMS systems store theirs, it would be, at best,
less efficient and less responsive than those RDBMS sys
tems.

How to Minimize Disk Accesses

There are two major factors in minimizing disk accesses:

1. Design the data structure of the disk so that data fields
which are commonly used together are stored as close to
one another as possible. This is the concept of data clus
tering which is discussed very infrequently by the imple
menters of the Relational Data Base Model.

2. Never write a routine which accesses the disk twice
when once will suffice. A corollary of this is to not use the
disk as if it were local storage.

August 1997

Data Clustering

There are a number of good examples of the uses of data
clustering. Two of the most common examples are dis
cussed here.

The vendor invoice is an example of a real world problem
which is handled much better in M than with standard
RDBMS methods. The vendor invoice consists of two
parts:

1. The name of the vendor, the date of the invoice, the
total amount of the invoice and other such important
items which appear once on the invoice.

2. One or more individual items purchased with the iden
tifier, description, quantity, unit price and extended price
for each item.

This is the classical "many-to-one" issue which is typical
ly handled withTu an RDBMS by having two tables, one
table for each of the parts 1 and 2 above. Each time a
user references the entire invoice, it is necessary to do a
logical join of the two tables to gather the necessary
information. Lots of disk accessing!

The inherent multidimensional nature of M allows us to
define a vendor invoice global with two indexes: 1.
accounting date and 2. invoice item and store all of the
information of part 1 above at this level. At a third index
level we can define a debit item and store all of the infor
mation of part 2 above as individual debit items.

What does this give us? All of the information about any
given vendor invoice will, at worst, be logically contigu
ous on the disk. In the majority of instances, one disk
access at this level will not only give us all of the infor
mation about a single invoice, it will give us all of the
information about a number of invoices on the same
date. If you are only interested in one invoice, you are
ahead of the game. If you are printing the invoice jour
nal for a given date, you are well ahead of the game. This
is one of the advantages of data clustering.

The standard double entry bookkeeping system leads to
many other such examples within the accounting soft
ware industry. Customer invoices, cash disbursements,
cash receipts and journal entries all lead to this "many-to
one" real-world issue.

A second ugly problem for RDBMS solutions (which
occurs repeatedly in medical applications) is the "multi
ple members of a table" issue. A patient typically has
more than one diagnosis, complication, drug, problem,
etc. The RDBMS solution must create a separate linked
table for each occurrence of these multiple members
from a table of data types.

In one medical application that I know, 175 of the 475
total data fields are of this data type. The normalized
Relational Model requires a very large number of tables.
Lots of disk accessing! The attempt to move this data
base from an M application (actually an early Meditech
MIIS application written in 1976) to an RDBMS was a
disaster from both a time and financial point of view.
The original MIIS development took one programmer
less than a year at a total cost including hardware of
under $100,000. The move to a 6 gigabyte Sequent com
puter and an RDBMS was abandoned after two years at
a cost of over $1,000,000. * It failed because the very
large number of tables and complexity that number of
tables introduced made data entry extremely slow and
resulted in reporting which was so inaccurate that it
could not be relied upon. Too much disk accessing!

M can handle the multiple members of a table in one of
two ways. The easiest way is to pack the multiple mem
bers into a single field using a delimiter such as a comma
to separate the individual table members. The Omega
OODB development system2 has a data type TMM
(multiple members of a table) which knows how to deal
with what otherwise appears to be a single field. This
does not directly map to any relational data base because
it can not be placed in normal form.

A second method which can be mapped to the relational
model adds two additional dimensions to the node at
which the other related data is stored. The first, a literal
(e.g., "DX"), identifies the particular attribute which can
have multiple values, and the second contains the value of
each of the individual table members. The literal "DX"
and possibly other such literals allow you to have more
than one such multiple members of a table data type in a
single data collection. Once again, M will provide useful
data clustering in that a single disk access will likely pull in
all of the related information. The relational model will
have to join two (or more) tables to collect all of the relat
ed information.

*Tiris entire data base will be moved this year to a 4 gigabyte Pentium PC. With the new tools developed by Omega2 and the use of
a TMM data type (multiple members from a table), it will require one programmer to spend about two months for programming.

http://www.mtechnology.org M COMPUTING 15

Programming Access of the Disk

One of my favorite laws is more or less related to the
Second Law of Thermodynamics. The law states that "it
is possible to screw up a one car funeral." Over the years,
I have seen many examples of this law as the law applies
to disk accessing.

Without question, the worst instance that I have ever
seen was a structure set up to facilitate cursor positioning
for a number of different dumb terminals. The 80 com
mands for each possible X position and the 24 commands
for each possible Y position were stored individually by
terminal type in two different M globals,
"'POSX(TYPE,X) and "'POSY(TYPE,Y). Moving the
cursor to a specific X and Y location on the screen was
accomplished by assembling a command from the two
globals and then eXecuting the command. An incredible
amount of totally unnecessary disk accessing! A few
users in screen formatted entry routines brought the
entire system to a crawl.

A second type of example appears in report generating
routines which have a tendency to evolve over a period of
time. Rather than rewriting the routine to minimize disk
accessing, a patch is put in to $ORDER through all of the
data again to pick up the new information. This may be
a quicker solution for the programmer, but not an effi
cient solution for the system in general.

As we get down the ugly practices curve, we find areas
which may or may not be inefficient depending upon how
bad the practice is and how much cache memory the sys
tem has available for you. One of these practices is to use
the same global variable two or more times in the same
section of a routine without making this variable a local
variable. In a second variation on this theme, the pro
grammer negates a good data clustering design by mak
ing a number of other. disk accesses in between the
retrieval or writing of the disk data which has been so well
clustered.

If there is adequate disk cache and the disk referencing
occurrences are close enough together during execution,
you may luck out with one or both of these practices. At
times when the disk is not particularly busy, you may have
enough cache of your own to make these practices work.
Unfortunately, just when resources are scarce, these
practices can make a slow system even slower. The main
message here is to not rely on cache memory to rescue
sloppy programming.

16 M COMPUTING

Summary

Every year around Super Bowl time, you can always find
at least one sports broadcaster declaring, with heartfelt
incredulity, that this particular team got to the Super
Bowl because it had somehow rediscovered that paying
attention to the fundamentals of football paid off. What
a concept!

In football, the fundamentals consist of blocking, tack
ling, running, passing, kicking, not (getting caught) vio
lating rules and some others. Computer programming,
on the other hand, is a simpler game. All we have to
worry about are the bottlenecks that the hardware dudes
have caused. To their credit, the old bottlenecks of mem
ory size, CPU speed, disk size, disk speed and dumb ter
minals have gotten much better. The interesting thing is
that the use of long-term storage, be it the old drums or
the new disk drives, remains the single biggest bottleneck
for data base management systems. Relative to CPU
speed, disk accessing has become an even worse bottle
neck than it was 20 or 40 years ago.

The fundamentals remain the same. Design your data
structures carefully, and treat the disk drive with respect.
It can be your best friend or your worst enemy. To com
pete with the RDBMS technology, we must continue to
do things that that technology cannot do and we must
continue to do everything faster than can be done with
that technology.

Some things never change. M

References

1. Martin, James. 1982. Application Development Without
Programmers. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc.

2. Gall, Don. ''An M Implementation of Object Oriented
Programming." M Computing 3, 1, (1995): 13-19.

Don Gall is CEO of Omega Legal Systems in Phoenix, AZ and a

member of the MTA Board of Directors.

August 1997

