
CONFERENCE PAPER

Distributed Processing Via En1ail

lJy Aaron Seidman

Abstract:

The local Association for Computing Machinery (ACM)
Chapter has a database of about 4000 names, including
members, vendors, speakers, etc. The data is used by the
treasurer and several different committees, each of which
needs different sets of information. In the past, each data
user has had to keep its own version of the database to sup
port its activity, but lack of synchronization and fragmenta
tion of the chapter data created problems. A new, integrat
ed database has been designed, using M and a graphic user
interface that can be synchronized via email. It allows each
stakeholder to be responsible for the key data on which it
depends and uses both an email-transmittable locking mech
anism and secondary synchronization to control updates.
The user interface is designed to make it easy for a variety of
volunteers to use just those parts of the system they need.
This combination of database control and easily used graph
ic interface makes it possible to delegate tasks to many
volunteers, each using his or her own computer.

The Problem

The Greater Boston Chapter of the Association for
Computing Machinery is an awkward size for database man
agement. It has too much data to be maintained easily by a
single volunteer, but it is not large enough to support a pro
fessional staff effort. In recent years, paid membership has
been in the 800-1000 range, but the database also has expired
members and some special categories: institutional mem
bers, honorary members and various vendor, professional
and other chapter contacts. All together, there are about
4000 names, addresses and ancillary items in the database.

The data is used by different parts of the chapter in different
ways. The Membership Committee has primary responsibili
ty for tracking membership expirations, keeping addresses
current, and producing mailing labels for chapter publica
tions. The Professional Development Seminar (PDS)
Committee conducts six all-day seminars every year and
needs to have registration and contact information (such as
phone numbers), as well as current addresses in order to
manage these events. Members are asked at registration or
renewal time if they are available to work on chapter activi-

S M COMPUTING

ties and the Volunteer Committee uses this to recruit people
for the other committees. The treasurer needs to be able to
trace payments and link them to the appropriate activity.
(e.g., Sometimes a company will pay for several of its
employees to take a seminar and there needs to be a way to
connect each of them to the same check.)

Historically, the problem has been addressed in two ways.
Initially, each component of the chapter maintained its own
database, with only loose coupling to the other repositories.
Not surprisingly, this resulted in discrepancies among the
different collections and sometimes it was difficult to deter
mine which version of some datum was correct. When these
differences involved questions of money it created some
awkward situations.

At one point, a member volunteered to collect and maintain
all the data in a central database, using a customizable com
mercial software program. This integrated database was
much more useful, but created another set of problems.
Clones of the database could be made avtrilable when need
ed by other chapter components, but much of the data entry
had to be carried out by the DB volunteer or by someone
under his supervision. (Some concurrent updating is permit
ted by the software, but mergers must be done with binary
copies of the database.) The time required to maintain the
database made it difficult to recruit a replacement for the
volunteer and left the chapter highly dependent on a single
point of failure. (Although the database has been conscien
tiously backed up, the software program that maintains it is
complex and has been highly customized; only one person
really understands how to use it.) It also turns out that the
database is of a proprietary design and on those occasions
when data gets corrupted, the whole database has to be sent
off to the software company to be fixed.

We have also found that we did not completely understand
all the data we did have, because the software does not main
tain a data dictionary (or at least not one that the user can
access). This is important in a volunteer organization with
sometimes unpredictable personnel turnover, where the out
going officer/chair/registrar/etc. may be about to disappear
from the area and forget to tell the incoming user about key
data structures.

May 1997

Goals

The chapter needs a database that is accessible by a number
of authorized individuals, can be updated by those who col
lect and handle the data, and that does not require extensive
training of those individuals who need to use it. It has to be
able to run on individual PCs (Macs would be a plus, but not
essential).

We started with the idea that we would like to retain the inte
grated database, but make it possible for maintenance to be
more of a collective enterprise. One way to do this would
have been to put everything on a central server with pass
word protection and allow all appropriate individuals to dial
in or connect via telnet or ftp to update or retrieve the data.
Unfortunately, this is not currently an option for the chapter,
although it may be in the future.

The database, although it appears large to those trying to
maintain it on a volunteer basis, is actually fairly small in
terms of the number of bytes it occupies on disk. In fact, in
ASCII form, it is ffasible to email it. Typically, this is the way
in which we transmit labels to our mailer. Size, therefore,
would not prevent us from using email as the distribution
medium. (While moving the database via email constrains
scalability, we anticipate that well before we hit practical lim
its we will have shifted to some kind of central server sys
tem.)

We would like to have the treasurer enter payment informa
tion, have the PDS registrar enter PDS-related data, have
the Volunteer Committee update preferences and email
addresses for activists, and the Membership Committee han
dle renewals and changes of address. The problem is, of
course, not how to let them modify the database, but how to
synchronize the multiple copies of the database so that
everyone has the appropriate changes that have been made
by others.

Finally, we need a user interface that is as intuitive as possi
ble and at most requires only a few minutes of instruction.
We want to be able to maximize the number of member vol
unteers who can help maintain the database and, if neces
sary, fill in for (and be successors to) lead maintainers.

Solutions

We needed to find suitable technology, devise a suitable user
interface, and solve the synchronization problem. (We also
designed it with a data dictionary, but since there is nothing
particularly innovative about that, we do not discuss it here.
For those not familiar with this technique, see the appendix
for an example.)

http://www.mtechnology.org

Technology

There is no theoretical reason why this project could not be
implemented in other types of database systems, but for ease
of maintenance and storage efficiency, we elected to use M
as the database engine. It would be nice if databases never
became corrupt, but with M it is easy to fix application-level
corruptions and possible for an appropriately knowledgeable
programmer to repair low level errors without having to go
back to the vendor.

We considered using a text-only user interface, but quickly
rejected it. First, there was a question of acceptance. Today,
we are so used to graphic interfaces that non-GUis are
immediately discounted and interpreted as a signal that one
is dealing with an obsolete system. It was important to the
chapter that members feel they are working with current
technology. Second, a well-designed GUI can convey more
information more effectively than a text-only system. (A
poorly designed GUI may actually be worse, but that is
another discussion ...) We decided that because there were
several M systems that already work with Visual Basic and
because we have some experience with it, it made sense to
use that for the graphics. Another consideration is that one
can use essentially the same VB system on Windows 3.1,
Windows 95, and Windows NT systems, thereby making it
easy to support multiple platforms.

The system is currently under development, using
Micronetics Workstation for Windows (MWW). Two factors
influenced this decision. One, MWW is being developed to
run on the same platforms that VB already operates on,
Win3.l, Win95 and NT. Two, we can produce as many royal
ty-free .EXE files as we need, without having to get an M
license for each machine on which we run the system.

The system could have been built with other interface tools,
such as Delphi, or with Visual M; these choices were more
practical than theoretical.

Graphic User Interface

One of the ways of making the interface easy to use is to iso
late the various functions it needs to perform and create
individual interfaces to each function. Thus, we will have a
screen for new member entry, another for entering dues pay
ments for an existing member, a screen for entering volun
teer information, etc. Potentially, we can use this technique
to limit certain kinds of updates to particular functions and
thereby simplify the synchronization. For instance, if the
copy kept by the treasurer is the only one that allows pay
ment entries, then whenever we merge copies of the data
base, we simply let the treasurer's payment data overwrite
any other. This turns out, however, to take care of only a
fraction of the problem.

M COMPUTING 9

In practice, most users of the system have to access a wide
range of data and there is considerable overlap in what dif
ferent committees would need to update. This means that
limiting the interface would not be a way of solving the syn
chronization problem. This does not mean that it is not a
good idea to have specialized interfaces for each of the func
tions, but that we should not use human-computer interface
design to solve a database problem.

In the end, we decided to go with the customized-by-function
approach, subject to revision based on user feedback. We
hope to get additional feedback from some of the local ACM
SI Gs; at least one of the membership chairs has agreed to act
as a beta tester for the software. Although we are designing
it so that we can impose access restrictions on individual
copies of the software, we will probably not activate that fea
ture because we know the 6-8 specific individuals who will be
using it. (We are just using a standard control system with a
global containing passwords and access codes. When activat
ed it requires the user to give a password and then only
shows the interface screen(s) the user is authorized to work
on or view.

Synchronization

The most important problem-and probably the most inter
esting for this forum-is how to keep the multiple copies of
the database in some reasonable harmony with one another.

With a centralized server, one would just use standard lock
ing schemes and users would operate in a real time mode.
We had already determined that this was not feasible at this
time.

An alternative would be a centralized depository, in which a
user checks out a copy of the database, leaving a flag that sig
nals subsequent users that it is available for read-only uses
until checked back in. By locking the entire DB it would sig
nificantly inconvenience other users and slow down the
process by which we keep our information current.

There is another potential problem as well. While we trust
our users not to do deliberate damage to the database, expe
rience teaches us that volunteers can get distracted by real
job issues, family matters, and other things. We could end up
with a queue of people unable to enter updates because the
current holder of the update token has not yet checked in the
revised DB. This is reminiscent of DSM systems in which a
system manager has killed a process with an operating sys
tem command rather than using the appropriate DSM utili
ty and all the other DSM jobs would grind to a halt. The only
solution was a system reboot.

In a standard, shared database, the most recent entry is the
current one. When merging two versions of a database, we
normally wish to take the newest entry and discard older

10 M COMPUTING

ones. Depending on the nature of the system and the
desired granularity, the system would lock the appropriate
record or record group, execute the update, and release the
lock. (The details may vary depending on how busy a system
this is, whether it is using transaction processing, etc.) The
important thing is that an update to one field not undo
updates to another field. The classic textbook illustration is
where, in the absence of locks, two users get the same copy
of a record, modify different fields, and file replacement
records. The last to refile preserves his changes and wipes
out the other change.

This kind of consideration made it clear to us that we would
require very fine granularity-down to individual fields
and a way of determining, in any database merger, which
field was the most recent. The obvious solution was to time
stamp each field in the database. Then, when a user has per
formed a series of updates, she can have the system write an
ASCII file with all the data, and email this to all other users.
They, in turn, can read in her data, and the system will com
pare the dates on a field-by-field basis, filing the one, there
by insuring that everyone is now operating on the latest ver
sion.

There are two problems: The first is that adding a time
stamp component to each field significantly increases the
size of the database. While this may not be critical for the M
global version, given the wide availability of large PC disks, it
could expand the ASCII dump significantly, making it more
difficult to distribute by email. A second problem is what to
do in the case that two different field stamps have the same
value. Since most fields will, in fact, ha~ identical time
stamps, we would have to do identity checks on the value of
every field in order to detect such events.

We decided that the simplest solution to both problems was
to use the following form of data compression:

The program has a provision for initializing the database,
providing a base time-stamp ($H) for the whole thing. Then,
all we need do is mark the exceptions. Whenever a field is
modified, the record is marked and a time-stamp for the field
is added to the record. Similarly, new records are also
marked. During a merge, unmarked records from the
incoming database are ignored, since we can assume that
they already exist in the resident database, either in the same
form or in a later, updated form. Whenever we encounter a
marked record, we look for time-stamped fields and see if
they are later than the comparable fields in the resident data
base (which is likely to be the initialization time for most
fields). Incidentally, this means that deletions are not actu
ally removed from the database, but simply marked as deleted.

In the case of identical time-stamps on a field, the system
compares the value of the two instances of the field and, if
they are different, reports to the user. (Lest one think that

May 1997

this is an improbable, if possible, occurrence, consider the
following scenario. Copy A is updated, then merged with
copies Band C. Next, Bis modified and merged with A and
C. During this second merger, all the databases have marked
fields with identical time-stamps from the first merger.)
This, of course, introduces another complication, namely
that after a few mergers, the number of compares on each
subsequent merger increases significantly, thereby slowing
the process.

We have provided for one simple solution, but if that does
not work well, we will go to a more sophisticated approach.
The simple solution is to reinitialize the base time-stamp
periodically. Given the size of the database, and the pro
cessing power of contemporary PCs, it is not clear that the
slowdowns from multiple compares will be that noticeable.
If it is, and given the relatively small number of users, it
should be fairly easy to arrange for all copies to be synchro
nized and then have all users run an initialization (or alter
natively, send a new version with a new base time-stamp; if
the incoming base time-stamp is later than the one in the res
ident version, the incoming data overwrites the resident
data). ·"'-

Another possibility is to modify the marking system to indi
cate that a merger has occurred and ignore records from the
same merger in other copies. Although more interesting
from a theoretical standpoint, and probably important were
we dealing with a larger user base, we have opted-in the
interest of time and programming simplicity-not to imple
ment such an approach at this time.

There is one final issue, and that is how we avoid duplicate
keys if we allow the entry of new records in more than one
copy of the database. An important requirement for a sys
tem like this is that we have a unique identifier for each per
son in the database. Because names cannot be guaranteed to
be unique, we assign each member a serial number.
However, if we allow more than one person to be updating
the database simultaneously, how do we make sure we don't
have duplicate numbers?

One way is simply to assign blocks of keys-our five-digit ser
ial number has no significance other than being a unique
identifier. We could simply make sure that each copy of the
data base generates a different set of numbers. For instance,
one copy could generate numbers in the 10000-19999 range,
another could be limited to 20000-29999, etc.

A second option is to allow only one copy at a time to be used
for new record entry. In this approach, a "master copy" carries
a token that enables new records to be entered; in all other
copies, updates can be made only to existing records. When a
user dumps the data to an ASCII file, one of the options is to
dump the token as well. The software marks the token as
absent and controls entries accordingly, until it is reloaded.

http://www.mtechnology.org

The token can be emailed, along with the data file, to the
next person doing data entry. The person receiving the token
(some kind of number, encoding information such as date
and latest serial number) can load it and operate that copy as
the "master." (Note that the token must be dumped simulta
neously but separately from the data; we only want the token
to go with one copy of the DB. One of the operator options
at the time of a data dump would be a token dump.)

A third alternative is to allow the creation of files of new
record data-without keys-that can be emailed to the hold
er of the master token, for automated batch entry. The soft
ware would have to be told, either by operator action or by a
marker at the head of the file, that the data represents new
information, and then it would simply assign serial numbers
as it loads the new member information. This latter has the
advantage that any of a variety of software entry packages
can be used for this purpose, including editors, word proces
sors, and spreadsheets, as well as our system.

Theoretically, all of these approaches are compatible, and
we have not yet decided whether we will use just one or a
combination. We are currently leaning toward the first and
third options.

Discussion

One may ask why we are emailing the entire database instead
of just those items that have changed; that would, after all, be
a logical extension of the data compression design. The
answer is that we may go to that kind of exchange in the
future, but there are several reasons why it is not in our first
version of the software.

This project is interesting from a design standpoint, but there
are some important engineering considerations. It is, after
all, a real system, designed to do a real job, so at a certain
point, we had to decide what we could implement in a rea
sonable amount of time. Those of us with experience in the
commercial marketplace are familiar with the "one-plus"
syndrome in which people keep coming up with "just one
more" added feature for a new product. By the time all of
these features have been added, the release date has slipped

· by a considerable amount. In addition, some of us have
learned the hard way that incremental development is more
likely to lead to reliable software. This is especially true with
something new because it is very difficult to be confident that
one has thought of every contingency. We also felt that it was
safer to have multiple instances of database copies (easily
identifiable by date and creator in a header record), than to
rely on a single instance of each copy. It is, in effect, a redun
dant backup policy.

M COMPUTING 11

Appendix:

The data dictionary is simply a global holding pointers to the
global locations of the various data elements, along with
basic information about the element's characteristics. For
instance, the entry for a phone number might look like this:

ADD("PHONE" I "GBL")="AREC(ID, [PH] ,INDX) ;l"

ADD ("PHONE", "TYPE") ="AREC (ID, [PH], INDX) ; 2;

2;W;H"
ADD("PHONE","FMT")="l0N; (3N) 3N-4N;l,3,617"

This tells the system that the data item "PHONE" will be
found in the "'REC global, which has the master key "ID,"
the literal, "PH" and is an indefinitely repeating field, with
the individual cases marked by "INDX"; the phone number
is the first piece. The phone "TYPE" is the second piece of
the data, and it may assume two values if present, "W" and
"H." It is stored internally as a 10-digit number in the form
(nnn) nnn-nnnn and the default value for chars 1-3 is 617.

Using a data dictionary means that one can modify entry
forms and reports without having to worry about the details
of storing and retrieving data elements each time; the system
keeps track of where to file information. It can have some
impact on performance, since storage and retrieval opera
tions have to be written to go through the dictionary. For

Data Innovations, Inc.

high-performance systems there are ways of optimizing but
we do not think that will be necessary for our purposes.

Another benefit of a data dictionary is that it makes it easy
to get a listing of all data elements stored in the system. One
simply has to have a routine that reads the "'DD global and
formats it appropriately. M

Aaron Seidman is a principal of /magi.native Illustrations, a
firm specializing in Web page construction and design for busi
ness and nonprofit organizations. He can be reached at 617-
232-2509. Email: aaron@imagi,nillus.com

NEW

M Programming:

A Comprehensive Guide

e

Seeking a motivated and dynamic individual for the position of Software Engineer.

Data Innovations' Instrument ManagerrM system is the industry leader in providing fast,
efficient, and affordable instrument interface solutions that meet the demanding needs of
clinical laboratories today and into the future.

Data Innovations is a fast growing company offering a breadth of experience and advancement opportunity.

Position's responsibilities include installation, support, and development of the Instrument ManagerrM system.
Frequent travel in the U.S. and abroad will be required.

Applicants must have at least 2 years M programming experience as well as strong interpersonal and customer
relation skills. Experience with the clinical laboratory environment and/or data communications a plus.

Please send resume, salary requirements and references to:

12 M COMPUTING

Dave Potter
Data Innovations, Inc.
20 Kimball A venue, Suite 302
South Burlington, VT 05403
(802) 658-2850 x12

May 1997

