
CONFERENCE PAPER

Application Development with V X s FileMan:
From Terminals via Client/Server to Web

by Mikko Korpela, Mauri Kaatrasalo, Hellevi Ruonamaa

The majority of the hospital information systems installed in
Finland are based on the FileMan/Kemel technology of the
U.S. Department of Veterans Affairs (VA). In 1995, a project
was established to "modernize" the systems in a stepwise man­
ner. As a first step, the strategic alternatives available were
analyzed (Karvinen et al. 1996). The strategy selected was
based on the client/server architecture, with Borland's Delphi
as the user interface technology and the V ,Ns · Remote
Procedure Call (RPC) Broker as the client-to-server commu­
nication technology.

In this paper we report on the experience in Finland thus far in
developing tools and standards for modernized client/server
applications based on FileMan, Broker, and Delphi. The read­
er is expected to have a basic knowledge of these technologies.
We first study the architecture of client/server systems based on
FileMan and Delphi in section 1, presenting an object-orient­
ed breakdown into high-level functional components. In sec­
tion 2 we present the generic functionality of the most funda­
mental part of any database application-file entry, edit, and
browsing. The next section deals with the architecture and
tools for producing textual and graphic reports from a FileMan
database in the client/server context.

The move from centralized systems with "dumb" terminals to
distributed systems with PC clients and graphic user interfaces
is a major step. However, another similar technical revolution
is already around the comer. In section 4, therefore, we discuss
the challenge of the World Wide Web (WWW) technology to
the FileMan/Broker/Delphi architecture we are just develop­
ing and identify ways of ensuring a smooth introduction of the
WWW technology. At the end of the paper we draw some gen­
eral conclusions of our experience.

1. The functional architecture of
FileMan/Broker/Delphi systems

Three of the five university teaching hospitals in Finland
(Helsinki, Turku and Kuopio), the leading vendor of laborato­
ry information systems (Mylab Corporation) and the
Computing Centre of the University of Kuopio established a
project in 1995 to explore the ways of modernizing existing sys­
tems based on V ,Ns FileMan and Kernel.

The University of Kuopio has been deeply engaged in intro­
ducing Mand the VA technology in Finni.sh health informatics

http://www.mtechnology.org

since the late 1970s and mid-1980s, respectively. During the
1990s its Computing Centre has functioned as the national
support center for FileMan and Kernel, translating new ver­
sions to Finnish, adapting them to the technological and cul­
tural requirements in Finland, and offering technical support
to M software houses. Since 1992, the Computing Centre has
developed in-house administrative systems with FileMan and
HyperM, a Graphic User Interface (GUI) software running on
InterSystems' DataTree M, originally developed by SAIC and
later distributed in Europe by CDS Ltd., UK. We thus had
some years of experience already in client/server technology
and GUis in the M/FileMan/Kernel environment.

Figure 1 - The program interfaces between the M database and the user

M COMPUTING 13

After analyzing the pros and cons of three strategies-all-M,
standard tools, and compromise-the project decided on
selecting Borland's Delphi and VA'.s RPC Broker as the
foundation of the next generation of M-based hospital infor­
mation systems in Finland (Karvinen et al. 1996). We recog­
nized early on, however, that the selection of the basic tech­
nologies is just a small part of the task of designing a new
applications development methodology. Furthermore, the
user interface should not be too dependent on any one pro­
prietary technology. It is important to identify major func­
tional components as the building blocks of any application
package and specify these components in such a way which
can be implemented in a variety of technologies.

Our view of the functional architecture of client/server sys­
tems based on FileMan and Broker is depicted in Figure 1.
The overall system breaks down into a client part written in
Delphi Pascal and the server part written in M. These parts
interact over a TCP/IP network through messages assembled
and interpreted by the RPC Broker.

Delphi is a development tool for Windows-based client/serv­
er applications (Borland 1995). It competes mainly with
Microsoft's Visual Basic, but is considered more efficient
during run time and more genuinely object-oriented. It
comes with a large choice of pre-programmed visual compo­
nents written in Object Pascal. In our architecture, Delphi's
role is to provide the user interface technology.

In any client/server system, there needs to be a data exchange
mechanism which connects the user interface and the data­
base. In this case, VA has developed the RPC Broker to con­
nect Delphi with FileMan (VA 1996). The Broker consists of
two parts, one at the client computer (written in Object
Pascal) and the other at the server computer (written in M).
Pascal programs at the client can call M procedures (rou­
tines) at the server through the Broker. The Broker's client
part sends the name and input parameters of the M routine
to the server part, which executes the routine and sends the
results back. The Broker thus provides a well-defined
Application Program Inte,face (API) to the M part-only
those routines which are registered in the Remote Procedure
file can be called and only by users who have been granted
access to them through the standard Kernel security func­
tions.

Another standard interface has to be defined between the end
user and the GUI software, in functional and stylistic terms.
Part of this standard derives from Windows and Delphi, but
there are still many decisions to be made locally. In Finnish
hospitals, various applications will increasingly be purchased
from different vendors using different technologies, M and
non-M. From the user's point of view it is outrageous if
there are conflicting practices in the packages that she or he
needs daily-if a certain semi-automatic sequence of user
entry performs one thing in one package and a completely

14 M COMPUTING

different thing in another. It is not possible or even neces­
sary to standardize everything, but we are trying to coordi­
nate our efforts with other vendors in the health information
systems arena in Finland to avoid outright conflicts in the
user interface.

From the systems developer's long-term point of view, it is
important that the functionality of the user inte,face be
defined in such a way that it can be implemented in various
present and future technologies and is not dependent on one
specific proprietary tool-although in practice the imple­
mentation must always rely on some technology, and there is
always an overhead in switching from one technology to
another. In our case, HyperM is a good touchstone for the
portability of GUI functionality, since it supports Windows­
look-alike displays on dumb VT220-compatible terminals. If
we can implement the central ideas of our user interface
standard to some extent with HyperM and VT220 terminals,
then we can be quite sure that the functionality can be imple­
mented with other GUI tools as well. Of course, it is more
important to provide for compatibility with future rather
than passing technologies, so we are trying to keep abreast of
new operating systems and Web browsers to see which type
of functions can and should be used in the GUI.

According to the object-oriented paradigm, systems should
be composed of reusable components in a hierarchical man­
ner. The object class "applications" should thus be analyti­
cally decomposed to its highest level functional subcompo­
nents in a top-down manner. When these components have
been implemented from bottom up using lower level compo­
nents, they can be used as the standard b\lilding blocks of any
application package. In our mind, any on-line database
application includes the following types of building blocks,
among others (Figure 1):

• user log-in and security,
• function selection through commands/menus/desktop,
• basic file entry/edit/browsing,
• reports, and
• transaction functions.

For maximum productivity, the system developer should be
able to quickly compose the bulk of the application package
from such "pre-cooked" building blocks. The most impor­
tant core functionality of the application, the transaction
functions, probably need to be so carefully tuned to fit the
flow of the work process in question, that no standard build­
ing blocks can be of much help in developing those parts.
However, if the more routine 80% of the application soft­
ware can be easily composed in 20% of the time available,
then the developer can concentrate on the most demanding
part.

In this case the log-in and security functions, etc., will be part
of the VA'.s Broker tools. The basic file entry/edit/browsing

May 1997

1
' t
r
!
f
t
' t
I
t
!
f
t
t

and reporting parts are not covered by existing tools, so we
decided to prepare as many pre-cooked building blocks as pos­
sible for them. Our approach to these will be presented in the
next two sections of the paper.

When an application has been assembled from standard high­
level components in a consistent manner, then it is relatively
easy to re-build the same application fromfunctiona{ly equiva­
lent components in a different technology, as need arises (see
Figure 1). For instance, when analyzing the requirements for
the Delphi components, we simultaneously experimented with
the Publication Register and Research Project Register of the
University of Kuopio. Since the VA's basic Delphi components
were not yet available, we developed functionally equivalent
GUI building blocks on HyperM for the most important parts.
It appears now that it will be fairly easy for us to convert the
HyperM forms of these applications to Delphi when the tools
are ready-the structure and functionality of the visible parts
of the applications remain the same; what changes are the stan­
dard components and the programming language binding
them together. It will be much harder for us to convert the
older HyperM applications which were not composed of stan­
dard building blocks.

"\

Figure 2 - The M-to-Delphi linkage implemented within the client:
"Local Procedure Call Broker"

http://www.mtechnology.org

The benefits of the modular structure have manifested them­
selves in one more way. The VA's Broker is specifically
intended for Remote Procedure Calls across a TCP/IP net­
work. In our program development and demonstration envi­
ronments, however, it was highly useful to have the Delphi
and M parts of the system on the same PC client, which
might contain the entire database as well or map the M glob­
als across the network from an M database server (see
Figure 2). We therefore needed a "Local Procedure Call
Broker" between Delphi and M.

Within a couple of weeks we were able to modify the RPC
Broker code by removing the calls to TCP/IP ports and
replacing them with calls to the lnterSystems' Visual M
Dynamic Linkage Library. All the code above and below the
Broker components remained the same. Simply by re-com­
piling the Delphi parts with the RPC or LPC library we get
networked or stand-alone versions of the applications,
respectively. In our mind this is an encouraging argument
regarding the power and flexibility of the VA's Broker archi­
tecture.

2. The basic database entry, edit, and
browsing functionality

When designing the functionality and the basic building
blocks for the routine file entry, edit, and browsing compo­
nents, the task ahead is to design how all the basic and
advanced features of existing FileMan databases can be visu­
alized and made controllable to the end user, with the mini­
mum amount of application programming. Since FileMan is
a network database, not a relational one, standard tech­
niques from commercial database front-ends cannot always
be adopted.

The VA has developed a set of Delphi components, the FM­
Components, which implement the linkage between visual
display elements (e.g., radio buttons) and FileMan elements
(e.g., a 'set of codes' type of field in a file) through the
Broker (remote or local). We have designed a higher level of
abstraction above the FMComponents, namely a standard
way of visually presenting the network database structures of
FileMan.

We first defined a small FileMan database which contained
all the various aspects that could be found in real life cases in
a minimal setup (Figure 3). It is indeed intended to be a test­
bed only, not applicable to any real use, although we used
familiar terms from the hospital laboratory environment.

FileMan files are depicted in Figure 3 as card decks, each
card representing a file entry with a few fields. One of the
files (Lab Result file) contains a hierarchical structure of
"multiple-valued fields" (subfiles), although we nowadays try
to avoid this feature of FileMan's. Logically equivalent but

M COMPUTING 15

more flexible subfile structures are created by pointer fields,
depicted by arrows-e.g., the Departmental Lab Test file can
be seen as a subfile to both the Lab Test file (list of
wards/clinics which can order this test) and the Ward/Clinic
file (list of tests which can be ordered by this ward or clinic).
The hierarchical subfiles are easier to manage but less suit­
able for various data retrieval purposes, compared with the
"flat" logical subfiles created by pointer fields. The standard
user interface must represent both types of subfiles in the
same way.

Lab result

100

. OIAntibioticft«,m
2Effect "'1n

Control~
8000S"XFI~ .

• OJ Name-"'"'
20xle,.,, ..

Person
8000')"XFl&,Jq:(

.OJName_,.,..,
21lateofbirth,,,,,

3Sex -~•'""'

Figure 3 - The demonstration database

The demonstration database contains examples of all
FileMan data types including yes/no (Person file's Married
field), word-processing, computed, screened pointer (Patient
file's Currently on Ward field), pointer as a name field (in
Patient file), and even a variable pointer (Lab Result file's
Patient field). There are also cross-referenced (underlined)
and identifier (bold) fields.

We developed a visual presentation for all the features
included in Figure 3. The examples which follow are intend­
ed to demonstrate the techniques, not to be artistically pol­
ished.

Figure 4 presents the basic layout of a form dealing with one
FileMan file, the Ward/Clinic file in this case. The fields of
the file are displayed on one or more "pages" of the Delphi's
standard "tabbed notebook" structure. The tabbed note­
book component is not available in all user interface tech­
nologies, but at least in HyperM the same functionality can
be satisfactorily simulated. The' Save, Save As and Delete
push-buttons refer to the file entry currently on the form;
Save As and Delete are used only on the first page if the fields

16 M COMPUTING

of a file entry span more than one page of the form. All func­
tionality of the form is accessible from the keyboard also,
without the mouse which is often impractical in routine
tasks.

Figure 4 - A sample form for basic file entry, edit, and browsing

In the Windows standards, the object to be displayed (file
entry in this case) is retrieved in a cumbersome way through
a File pull-down menu. We wanted to retain a more FileMan
look-alike way of selecting the file entry. The user can type
a few characters from the beginning of the name of the entry
in the corresponding field and then hit the Enter key or push
the Find button with the mouse. If the string is not sufficient
to uniquely identify the entry, a VA-supplied selection com­
ponent will show the choices very much in the same way the
"old" FileMan does .

Figure 5 - A sample "subfile list page" within a "tabbed notebook."

If there are subfiles, either as multiple-valued fields or as
other files pointing to the current one, each of them requires
a page of its own in the tabbed notebook. In Figure 5, such
a subfile list page is presented, displaying a list of all the
Departmental Lab Test entries which point to the current
Ward/Clinic (Surgery in this case). A third page will display
a list of all the patients currently on this ward, since there is
a pointer from the Currently on Ward field of the Patient file
to the present file (refer to Figure 3). The lists can in real life
display more than one piece of information about each item
in a columnar way; in Figure 5 there is nothing more to dis­
play in the demonstration database besides the code of the
laboratory test.

May 1997

If the user has sufficient rights to "navigate" further in the
database structure, she or he can select an item from the list
and "zoom in" to it either by double-clicking or by pushing
the Zoom button. This will open up a new form dealing with
the subfile (i.e., with the Departmental Lab Test file in this
case Figure 6). The new form is opened slightly to the right
and down over the previous one, so that the titles of both
forms will be visible. The new form can again be a tabbed
notebook containing subfile list pages which can again be
used to zoom in further to the database structure along the
paths provided by the information in file.

Figure 6 - Another file opened up by zooming from the "subfile list."
A "special look-up component," with a further zoom button, is
opened at a pointer field.

The Next and Previous buttons browse through the file in an
order which depends on the way this form has been arrived
at. In our example, the buttons would move forward and
backward on the list displayed in Figure 5 (i.e., browse
through the departmental lab tests (logical subfile) attached
to the Surgery Ward). However, the same Departmental Lab
Test form can be reached from the Lab Test file, through a
subfile list page displaying all the entries pointing to a select­
ed laboratory test (i.e., a list of all the wards/clinics which can
order this test). In that case the Next/Previous buttons would
move within that subfile. The Departmental Lab Test form
might also be directly accessible from the main menu of the
application; in that case, the Next/Previous buttons would
work in the alphabetical order of the name field ("B" cross­
reference in the FileMan file).

Figure 6 presents still another mechanism for navigating in
the database. Both the Department and the Lab Test fields of
the Departmental Lab Test file are pointers to other files. If
the user has sufficient access rights, she or he can again zoom
in along a pointer and open up a new form displaying an
entry in the file pointed to. This is equivalent to the "Learn
As You Go" (LAYGO) functionality in traditional FileMan.
For instance, if the user wants to have a closer look at the
Lab Test in question, she or he will click at the "drop-down
list button" at the end of the field. A list of the choices (i.e.,
entries in the Lab Test file) will be displayed. If there are
more choices than it is reasonable to transfer across the net-

http://www.mtechnology.org

work at one time, a More button will also appear (depicted by
a double down-arrow). The next batch of choices will be
retrieved from the server by pushing this button.

If the user has the FileMan LAYGO rights, a Zoom button
will also appear. By selecting an item on the list and clicking
this button, or double-clicking the item, the user can open a
new form (Figure 7) displaying all the information available
about the Lab Test in question. If the user has sufficient
rights, she or he can even edit the lab test's basic data and
navigate further across the database to the test results and so
forth.

Figure 7 - Hitting the "zoom" button opens a further form via the pointer.

In summary, the tabbed notebooks, subfile list pages, and the
two types of zoom functions taken together are capable of
providing a visual presentation of the entire database struc­
ture of any complexity. Provided that the user has sufficient
access rights, she or he can move around the "hyperdata" as
far as the PC's memory and other resources permit. The
basic aspects of the user interface are incorporated in Delphi
form templates which systems developers can use as the
basis. For each file of the database, one form needs to be
developed, _possibly with a number of pages. The same form
can then be used as the "data entry method" of the file in
question throughout the application, irrespective of whether
it is accessed directly from a menu or through a linkage from
another file, in accordance with the object-oriented para­
digm.

3. Report generation functionality in the
client/server environment

Besides the interactive browsing functions discussed in the
previous section, the users will also need more voluminous
reports on paper or screen. In the client/server environment,
however, it is not self-evident how voluminous data should
be transferred across the net from the server to the client. In
the Broker architecture in particular, the client and the serv­
er can communicate only through request messages sent by

M COMPUTING 17

the client and response messages sent by the server. A pro­
gram running on the server cannot directly write to the
client's screen or any other device at the client end.

Let us use a simple practical example to study the require­
ments for the architecture and tools for producing textual
and graphic reports from a FileMan database in the
client/server context. Figure 8 presents an example of the
types of report generation parameters required, assuming
that the user wants a report from the Lab Result file.
Typically, a report will contain a selection of the file entries
(in this case the results of a few selected laboratory tests for
a given patient for the last month) sorted in a given order (in
this case first according to time, then according to the test
code), formatted in a given way (in this case as a graph
instead of a print) and output on a given device (in this case
a window on the client PC's screen). Some reports should
work with fixed parameters-"click this button to produce
the patient's standard cumulative lab test report"-while it
should also be possible for the user to specify more or less ad
hoc reports. The user should be able to save the specifica­
tions of an ad hoc report for easy repetition.

Figure 8 - A sample report start-up window.

How do we implement such reporting functionality? A
client programmer can use VJ,,;._s FMComponents to request
for a list of raw data (e.g., the laboratory results of a given
patient and then write a Pascal program to format and dis­
play it). This is reasonable when relatively small amounts of
data are transferred in an interactive setting or displayed in
a graphic way. However, most reports will remain textual,
and there may already be an existing M routine to produce
such a report on the server side. Since our main interest is
in modernizing legacy systems based on FileMan, we wish to
reuse existing software whenever possible.

Figure 9 presents our view of the general architecture of
report generation by making use of existing M software.

18 M COMPUTING

Starting from the upper left corner, the user will select a
report from a menu. A few most-recent user-specified
reports should be available in addition to the pre-programmed

Figure 9 - The report generation architecture

reports. The parameters of each report are stored in a set of
parameter files on the server side. The parameters include:

• Which FileMan file is the basis for the report?
• Which fields are used for selecting the subset of file entries
for the report? What are the default selection criteria for
each field? Can or must the user modify the selection cri­
teria when starting the report?
• In which order (by which cross-reference) will the File Man
file be browsed through, to search for the entries to be
selected? Is the browsing order depend\filt on the actual
selection criteria the user entered?
• What is the default sorting order in which the entries will
be output (sorted by which fields)? Which FileMan sort
template or M routine will implement the sort? Can the user
select from other sorting orders when starting the report?
• What is the default formatting of the output? Which
FileMan print template or M routine will implement the for­
matting? Can the user select from other formats? Is the
selection of formats dependent on the actual sorting order
the user selected?
• What is the default output device? Can the user select
from other devices? Is the selection dependent on the actu­
al format the user selected?

If the parameters of the report are not completely fixed, a
window like the one in Figure 8 will pop up and the user can
modify the default parameters. An output request compo­
nent will then be called (see Figure 9). It will send the name
of the M procedure and the actual start-up parameters
through the Broker to the server side. If the user selected to
print the report on one of the server's devices, the report
generation procedure can be started as a TaskMan task in
the background, and the server procedure just needs to send
a message back to the client to inform it that the request has

May 1997

been completed. Otherwise, the server procedure must call
the given M report generation subroutine and wait for its
completion before responding to the client.

All report generation procedures are comprised of the same
steps. First, the database will be browsed through according
to some index (a cross-reference or the physical order of
entries), trying to keep to the minimum the number of
entries traversed. At each entry, the selection criteria are
studied to see if the entry must be picked for output or not.
If the browsing order is not the same as the output order, a
temporary sort index must be generated. In that case, the
entire procedure of "browse-pick-store in temporary index"
must be completed first and then the index browsed through
again. At each printable file entry, information will be
retrieved from the database, formatted, and written to the
output device.

The entire report generation procedure can be implemented
by a call to the FileMan's print routine ENl "'DIP, if the
selection, sorting, and formatting criteria are not too com­
plex. The other alternative is to write a hard-coded routine.
Unfortunately, i.1:'is not easy to combine the two approaches
(e.g., to use a File Man sort template to pick the entries for
printing and a hard-coded subroutine for advanced format­
ting).

Whether it is the DIP routine or a hard-coded one, the out­
put procedure will ultimately issue M WRITE commands to
produce the output on a device accessible by the server. The
standard VA Kernel's Device Handler is capable of handling
various printers and files of the host operating system. The
latter can, for instance, function as a "pipe" to a World Wide
Web service, in case the report is formatted as an html
(Hypertext Mark-up Language) document. The Device
Handler also allows the output to be automatically sent to a
given email address as a MailMan message. For instance,
our university's Publications Register produces departmen­
tal publication lists to the Web (see http://www.uku.ftJenglish/
--> Research--> Publications), and our Student Administra­
tion system makes use of the MailMan output feature by
automatically sending exam results to students by email.

In order to get the output to the client side, the easiest way is to
first direct the output to a temporary sequential file on the serv­
er side (presented by a "tape cassette" in Figure 9; the VA
Kernel's Browser device can also be used). When the output
procedure is completed, a response message is sent to the client
to acknowledge the completion of the output request and to
inform of the name of the sequential file. The client software
then invokes an appropriate display or printing component,
which makes use of a sequential read component. The latter
issues requests to the server through the Broker to send in the
contents of the sequential file line by line.

If the report was readily formatted on the M side, it can be sim-

http://www.mtechnology.org

ply displayed in a memo window or directed to a local printer.
Otherwise some Delphi Pascal code can be written, or an exist­
ing Delphi component used to present the data as a graph, for
instance. The output can also be directed to a spreadsheet or
some other OLE (Object Linking and Embedding) object.

The main problem with the above procedure is that the
report generation on the server side takes place as a single,
non-breakable step from initialization to completion. If the
user, for instance, accidentally starts a procedure which pro­
duces a huge report, there is no easy way to cancel it while
the client's output request component is waiting for a
response from the server. A more interactive way is to use a
pipe device between the server and the client (see Figure 9).

A pipe is a TCP/IP sequential output port on the server side
and a sequential input port on the client side. When this
alternative is used, the client side first allocates a free input
port and sends the port number to the server side along with
the output request. The report generation procedure can
now be started as a background task and the client side be
immediately informed of the completion of the request. The
client then invokes the display or printing component, and
the sequential read component starts to wait at the end of
the pipe. When the report generation procedure on the serv­
er side proceeds to the output phase, it will start writing to
the pipe device, and the data starts dropping through to the
client. If the user now realizes that the data is not what she
or he intended, s/he can push the Cancel button. The client
software will close the pipe, the server process will get an
error condition and terminate the task.

In summary, report generation is a complex procedure in a
Broker-based client/server environment. The architecture
presented above makes it possible to benefit from existing M
software, including FileMan's standard sort and print tem­
plates. Delphi Pascal coding is needed for graphic and other
special outputs which can be produced on the client side
only. All other reports can be freely directed to either a serv­
er device or a client device.

We are just beginning the implementation of the architec­
ture. Reports can already be generated by a Broker call to
ENI"' DIP or to a hard-coded M routine and transferred
through a sequential file to the client for display. However,
the start-up parameters and the pipe device will need more
work.

4. The challenge of the World Wide Web
technology

Hospitals in Finland still have more dumb terminals than
PCs. Each university hospital has from 1,000 to a few thou­
sand terminals in use. It is estimated that it will take at least
five years before client/server applications can be installed in

M COMPUTING 19

all parts of the university hospitals. Besides the new hard­
ware infrastructure required, it will be an enormous task to
develop or purchase new applications packages which make
use of the client/server architecture. The tools and tech­
niques presented in the previous sections of this paper are
intended to benefit from existing databases and report gen­
erating software, but we readily admit that it is still not an
easy task to modernize the legacy systems or develop brand
new ones.

Yet experience indicates that the burden of hardware infra­
structure and software development may be a small part of
what it takes to train the users, manage the configurations
and software versions of thousands of users, organize a help
desk, etc. Client/server systems are known to require much
more systems management work than traditional terminal­
based systems.

During the last year, an alternative to PC clients has
emerged under the slogan of Network Computer (NC). The
new paradigm has its roots in the World Wide Web technol­
ogy and the Java language. The idea is that instead of dis­
tributing specialized client software to all nooks and corners
of a university hospital for instance, the clients should just
run a standard Web browser capable of loading the special­
ized functionality from the network in small pieces
("applets") as and when needed. Thus, the ever more com­
plex and "fat" PCs could be replaced by simple NCs, and the
software could be centrally managed.

It maywell be that by the time our hospitals have replaced all
the terminals by PCs, it appears that they could have saved a
lot of time and work by going straight to NCs or at least
"Network PCs." Is it thus better to freeze the modernization
of legacy systems along the client/server model and wait until
the NC alternative has come true?

The NC model is still based on the client/server architecture
and graphical user interface. Ideally, there needs to be no
difference from an end user's point of view between a PC
client application and an NC client application-only the
software architecture is different. In our view, it is important
to start modernizing the legacy systems with the kind of tech­
nology that is readily available, but be prepared for a change
of technology within the next few years. The new technolo­
gy can be based either on Java NCs or more probably on
reduced-Windows Network PCs, but it will, in any case, be
based on Web browsers as the user interface engine.

The main challenge to the FileMan world, in our mind, is to
develop another functionally equivalent set of systems devel­
opment building blocks in the Web technology in parallel
with the Delphi-based ones (refer to Figure 1). As we now
have FMComponents, output request components etc. in
Delphi Pascal, we should develop functionally equivalent
components for the Web technology. As we now have the

20 M COMPUTING

standard building blocks for the basic file entry/edit/browsing
functions in Delphi, we should develop similar building
blocks for implementing the same user interface (Figures
4-7) on Web servers.

All the required features do not yet exist in the Web tech­
nology for the easy development of secured and efficient
data entry functions. However, we are embarking on devel­
oping the Web components in parallel with the Delphi com­
ponents. When the Web/NC alternative becomes mature, it
should be a reasonably limited task to convert the applica­
tions to the new technology; in the same way as we now plan
to convert our experimental HyperM applications to Delphi.
All the server software · behind the Broker interface will
remain intact.

The Web/NC challenge does not need to be another enor­
mous re-development task to the FileMan world. However,
an easy transformation requires that the client/server appli­
cations are now composed from as high-level building blocks
as possible in a consistent manner, keeping the forthcoming
alternative technology in mind.

5. Conclusion: Whither applications
development with FileMan?

VA's RPC Broker and FMComponents provide completely
new prospects to modernize legacy systems based on
FileMan databases. Our experience thus far is that impres­
sive and efficient systems can be developed with this tech­
nology. For maximum productivity of systems development,
standardized functionality and higher-level building blocks
are also -needed. Applications developed in such a way for

-one GUI technology can be fairly easily converted to anoth­
er, retaining the touch and feel of the user interface.

We are developing a set of tools and standards for the
Finnish FileMan users based on Delphi, Broker, and FM­
Components. We call the tool kit FixIT ("Is your hospital's
Information Technology worn out? Then FixIT!"). We have
also experimented with developing functionally equivalent
building blocks in HyperM, successfully. If necessary, it is
possible to complete both the Delphi and HyperM building
blocks and thus provide PC users with a fully modern inter­
face and the terminal users with a somewhat more restricted
interface, without duplicating all the programming efforts.
The same approach is followed in developing another set of
building blocks for the Web technology in a couple of years.
The RPC Broker and FMComponents were officially
released in November 1996. For about a year before that,
our development work was based on preliminary informa­
tion and later on an early evaluation kit. It is a key issue to
the Finnish hospitals and software houses using FileMan
that the development efforts in Finland and the USA will be
more closely coordinated in the future. Much of the func-

May 1997

tionality developed and to be developed in Finland, the "spe­
cial lookup component" and the report generation compo­
nents for instance, might be relevant to the users of FileMan
applications in other countries as well. We are, therefore,
very happy that the contacts between the American and
Finnish development teams have recently been brought to an
official standing.

There is a lot of work to be done before systems developers
have a complete tool kit in Delphi and still a lot more before
the same is available in a Web browser technology. By coor­
dinated action and division of labor between various devel­
opment centers, the duplication of efforts can be avoided,
and the future appears bright for client/server applications
development with VA's FileMan, even on the Web technology.

M
References

Borland. 1995. Delphi User's Guide. Scotts Valley, CA:
Borland International.

Karvinen, K., Korpela, M., Ruonamaa, H. "Rejuvenation of
legacy systems: The case of M/Kernel-based hospital
information systems in Finland." M Computing 4, 1,
(1996): 9-14.

VA 1996. RPC Broker User Manual. Version 1.0. San
Francisco, CA: Department of Veterans Affairs.

o"'er o,
~ , .. ,, ...

e,

~

iObjectsT
with a"

ce costs. Bu plicatj

ESI Technology Corporation
.__ o,,, Object Technology & Training Services

The University of Kuopio Computing Center introduced M Technology in
health informatics in Finland in the earl:y 1980s and the FileMan/Kemel
technology a few years later. Dr. Mikko Korpela is head of Systems
Development and a researcher on health informatics at the university.
Email: Mikko.Korpela@Uku.fi
Http://www.uku.fi/-korpela

Mr. Maun Kaatrasalo implemented the FixIT components as his MS.
work

Ms. Hellevi Ruonamaa, MS., has translated FileMan and Kernel into
Finnish and is now in charge of Fi:xIT support.

M Professionals Wanted

Contact MTA's

Job Referral Service

siObiectsM
deep and long term
r building apolic · ·
e future.

