
FOCUS ON FILEMAN

Prograinining Hooks 105: Interinediate
Input Transforins
by Rick Marshall

Programming hook: a significant point
at which a programmer can insert M
code in the sequence of events that
makes up a standard database activity.

Introduction

The previous article in this series
introduced this most widely used of
FileMan's programming hooks, list­
ed its ten distinct uses, and exam­
ined the first.This article will con­
tinue that investigation by digging
into the techniques you need to sue~
cessfully use the input transform.

General Issue: Execution

The input transform protects the
integrity of the database. When you
choose to override FileMan's han­
dling of input transforms, you
assume responsibility for preserving
that integrity and for ensuring that
your field astonishes your users as
little as possible.

To meet this responsibility you need
to know when FileMan executes
input transforms, both to under­
stand what you must reproduce
when you go around FileMan's API,
and to make educated decisions
about when to suppress execution of
parts of the input transform.

Creation & Update

a. When creating a new record with­
in a LAYGO lookup, the input
transform on the .001 (if one exists)
and .01 are executed. However,
when you create entries with

http:/ /www.mtechnology.org

FILE"' DICN, FileMan does not
fire the .0l's input transform. Also,
input transforms on screened point­
ers and screened sets of codes aren't
fired during record creation.
FileMan treats any fields updated
during record creation, such as
required identifiers and fields speci­
fied in the DIC("DR") input vari­
able, as updating (see below) rather
than creating.

b. When updating field values, whe­
ther entering them for the first time
or editing them thereafter, FileMan
executes the input transform for
each field changed. You can over­
ride this when updating fields
through FileMan's API, or when
using an input template, as docu­
mented in the FileMan manuals.
Also, the input transform does not
execute when you delete field val­
ues.

c. When FileMan installs filegrams
on your system, it executes the input
transforms for the affected fields.

d. When FileMan imports data from
a foreign environment, it will fire
the input transform if you specify
the data to be in external format.

e. When FileMan extracts data from
one FileMan file into another, it
executes the input transform for the
changing fields of the destination
file.

Validation & Record­
Independent Firing

f. The Verify Fields utility option
fires the input transform for the

chosen field on every record in the
file.

g. FileMan's Reader module can
prompt the user based on a field's
definition. Such DD reads involve
firing the base field's input trans­
form on whatever value the user
enters.

h. The Data Checker call in FileMan's
Database Server (DBS),
CHK"' DIE, fires the chosen field's
input transform to test a value not
yet associated with a specific record.

i. The Data Validator, on the other
hand, executes the input transform
for a value proposed as a new value
for a field in a specific record.

Surprises

j. DIFROM, the DIFROM Server,
and KIDS do not execute input trans­
forms. Since the data (transported in
internal format) already passed its
input transforms when FileMan filed
it in the source database, FileMan
does not fire the input transforms
again at the target site.

k. The Transfer/Merge option does
not execute the input transforms of
the fields in the transferred or
merged records, since this option
assumes that the target and destina­
tion files store data in a similar for­
mat.

1. Triggers do not fire input trans­
forms.

m. The input transform of a pointer
or set of codes field is sometimes par-

M COMPUTING 3 3

tially fired if a cross-reference on
that field is used in a lookup. The
conditions and results of this are
tricky enough that we will treat it as
a separate subject in a future article
on input transforms.

n. Bypassing FileMan and setting
data directly into the globals means
taking the entire responsibility for
data integrity upon yourself, not sur­
prisingly.

General Issue: On Which
Record Are You
Operating?

Many of the input transform's
functions beyond syntactical valida­
tion require finding out the identity
of the executing transform's
record. For example, to coordinate
the current field's value with anoth­
er field (no pregnant patients who
are male, say), an input transform
needs to identify the record for
which it is firing so it can fetch the
other field belonging to the same
record.

Unlike certain other programming
hooks, such as the whole file
screen, the input transform does
not offer you a naked indicator pre­
set to the level of the current
record. Instead, you must refer to
the current record explicitly by its
internal entry number (IEN).

A Review of IENs

You can uniquely identify a record
in a relational file, or at the top
level of a hierarchical file, by know­
ing only two numbers: the file num­
ber and the record number within
that file. However, in the lower lev­
els of hierarchical files (called mul­
tiples or subfiles) the tree structure
of the hierarchy requires more
information for identification.

In tree theory terms, you cannot
identify a record without identify­
ing its ancestors all the way back to

34 M COMPUTING

the file root. Individual record num­
bers can only distinguish among
records that share the same immedi­
ate parent. Since records at the top
level of a tree all share the same
root as their common parent, know­
ing their record numbers is enough
to uniquely identify them.

Below that first level, while knowing
the record number does tell you
which record you want of those in its
immediate group of siblings, it does­
n't tell you which group of siblings
you're referring to. In a tree of ten
records, each of which has five
descendent records, knowing the
subfile record is number 1 only cuts
your choices down from fifty to ten;
all ten top level records have a
descendent record number 1. Just
as in works of heroic fantasy, you
must name each record's parents
going back to the original ancestor;
our record is the number 1 whose
parent is number 5. So throughout
FileMan, identifying a record takes
the file number and a number of
record numbers equal to the level of
the file within its hierarchy: one for
the top level, three for a multiple
two levels below it.

The DA Array

For input transforms, FileMan puts
the current record's IENs into the
local array DA. The IEN of the cur­
rent record is in DA itself, its par­
ent's record number is in DA(l),
grandparent's in DA(2), and so on.
When you run out of ancestors,
counting back toward the file root,
the DA array runs out of array
nodes; top level records have only
DA.

Or is it that simple?

DA & .01 Fields

Consider the input transform on a
.01 field for a new record. Let's
imagine the new .01 value is
"SIBELIUS,JEAN" (for a COM-

POSER file). The user gives
FileMan "SIBELIUS,JEAN" as a
lookup value for the file, and
FileMan confirms that no such
record yet exists. It asks the user to
confirm that this should be a new
record and then passes the value
through the input transform of the
.01.

At this point, the new record does
not yet exist, so it can't have an IEN
or a DA value. For that matter, it
doesn't have any other field's values
yet, so there's nothing for the input
transform to compare the .01 with in
the current record. The same input
transform that handles modification
of the .01 in an existing record must
be able to deal with this situation as
well, so clearly the programmer
needs some way to distinguish the
two cases.

For historical reasons, the DA array
during a new record addition can't
be distinguished from the DA array
during updating. There are no value
or structural differences the pro­
grammer can use to make the input
transform recognize from DA
whether the .01 is being added or
updated. DA maf or may not be
defined and if defined, may have a
random value; additionally, extrane­
ous DA array elements may be pre­
sent. However, except for the top
level DA variable, any others that
should be present (DA(l) should be
present when working with an entry
in a subfile under a top level file)
will be present and have the correct
values.

DA & Other Contexts

When the input transform fires in a
record-independent context, such as
part of a Reader's DD read or for
the Data Checker call, the DA array
has no meaning. Any input trans­
forms that normally try to coordi­
nate the field's value with other
fields must not do so in these con­
texts. Knowing that the input trans­
forms may not be tied to a record

March 1997

should help programmers write
them to behave correctly in either
case.

Another context that needs the
developer's increasing attention is
transaction processing. For exam­
ple, ScreenMan sessions operate as
transactions, with the changes pro­
posed by the user saved up until the
user saves the data. Many develop­
ers assume FileMan always files
data sequentially and writes input
transforms that assume the presence
of other fields, but clearly, with the
advent of GUI, such sequential pro­
cessing will increasingly become the
exception. Knowing the potential
for transactions should lead devel­
opers to code their inter-field rela­
tionships flexibly, to run correctly
however many fields may happen to
have been filed at any given time.

FileMan also frequently parses the
input transformlnstead of executing
it. The overloading of the input
transform discussed in the previous
article means FileMan can often
save time executing it by making a

It WORKS

It's REAL

It's FAST

It's as simple as that.

KB_SQL

decision based on quick scans of its
contents. For example, FileMan
may check for +X=X in the input
transform and take this to mean the
field is numeric, or may look for
%DT= in a date field to figure out
what kind of help to provide a con­
fused user. Knowing that FileMan
parses input transforms should lead
developers to be conservative in
transforming existing input trans­
forms, to retain the kinds of coding
constructs FileMan looks for.

As we'll see later, FileMan takes this
as far as executing selected pieces of
input transforms under certain cir­
cumstances, such as when looking
up entries with a pointer index.
Some of these kinds of activities are
private, variable tactics that devel­
opers should not rely on, but others
are supported and lend themselves
to valuable solutions that are not
otherwise easy to arrive at. Knowing
where FileMan puts the boundaries
on such partial execution of input
transforms will help programmers
choose the sequence of activities
within their transforms.

Conclusion

Identifying the record under consid­
eration and staying aware of the
context in which input transforms
execute are essential to making
them do the right thing in all the sit­
uations in which they might be
called to action. In the next issue
we'll get into how to apply this
knowledge to the various problems
you can solve with input transforms.

M

Forward your FileMan questions to the
mail group FMTEAM on the VA 's
FORUM system, or write to: VA IRMFO
San Francisco, Suite 600, 301 Howard
Street, · San Francisco, CA 94105.

Rick Marshall works at the Seattle
Development Satellite office of VA 's San
Francisco IRM Field Office. He works on
FileMan, the MTA Board of Directors,
and the MDC, and is currently writing the
1995 Standard M Programmers'
Reference Manual

M Programming Services

System Enhancements
LCI is a provider of software development services specializing in MUMPS.

We offer analysis and programming services to enhance existing MUMPS

systems with an emphasis on the health care field. We can provide

enhancements to IDX, CompuCare, HSII and other systems. Just ask us!

Other Services
World Wide Web Connectivity to M Databases

SOL Mapping of M Databases

ClienVServer Application Development

Graphical User Interfaces

EDI

The easiest way to access M data

from Windows applications.

Legacy System Support & Migration

Project Management

For more information call 206 - 329 - · 7080

KB Systems, Inc.

58.5 Grove Street, Suite 201 Herndon, VA 20170

Voice (703) 318-0405 Fax (703) 318-0569 www.kbs-ystems.com
©1997 KB Systems, Inc. KB_SQL is a registered trndemark of KB Systems, Inc.

http:/ /www.mtechnology.org

•
0
••

00 LCI ■□□□■■
■□■□□■
Software Development & Services

300 Lenora Street, #265

Seattle, WA 98121

206 - 329 -7080

LCl@eskimo.com

M COMPUTING 35

