
FEATURE ARTICLE

Doing M for the World Wide Web

by Jamie Newton

Abstract

M Technology possesses a natural affinity for constructing
applications for the World Wide Web. With capabilities such
as good string handling, high performance and scalability -
and a superior Web-adapted server - M Technology has a
very real opportunity to be at the forefront of Internet and
intranet technology.

How the Web Works

In essence, Web access is simply a system of requests and
responses between a client and a server. A Web server lis
tens for incoming requests from a Web browser, determines
the page to be retrieved and delivers the requested page to
the browser where it is rendered for display.

The syntax of the request determines what the web server
does when it retrieves it. The request is often in the form of
a Uniform Resource Locator (URL), which can be thought
of as a document's unique address. An example of a URL is:

http://www.company.com/index.htm

This URL specifies a protocol (HTTP), a server address
(www.company.com), and a document location (/index.htm).
With this information, a browser can locate the specified
server on the Web and request retrieval of the document.

The suffix ".htm" indicates that the document contains for
matting information specified in the Hypertext Markup
Language (HTML). HTML allows text to be "marked up"
so that effects such as bold, italic, underlining and other
effects may be displayed. It is the browser's responsibility to
interpret the HTML and render the page for display.

Other requests may be formulated by entering data into an
HTML form. An HTML form is a web page that contains
user-interface controls with which the user may interact.
When the form is submitted, the entered data is passed to
the Web server as part of the URL. For example, a form with
a text field for "Social Security Number" may submit a URL
such as http://lookup.pl?SSN="1234-567-8910". In this case
the document to be retrieved is a CGI script (more on this

30 M COMPUTING

later), and the string following the '?' is the user-entered
data.

Web Page Retrieval

After the Web server receives the request, it attempts to
locate and retrieve the requested document. During web
page retrieval, the underlying communications protocol,
HTTP, takes care of all details related to transmitting the
document from the server to the browser. After locating and
retrieving a document, the browser scans the page, supplies
formatting according to the embedded HTML specifications
and then retrieves any images.

Static and Dynamic Web Pages

The HTML pages that are returned to the browser may be
classified as static or dynamic. In the case of a static page, a
document physically exists on the server containing fixed text
and images. In contrast, a dynamic page ~ an HTML page
that is created "on the fly" in response to some user-specified
request. Dynamic page creation is possible because instead
of locating a document for retrieval, a Web server can be
instructed to run a specified program. Such a request was
given in the "Social Security" example above. These
requests are termed CGI requests (Common Gateway
Interface), and programs that service such requests are often
called gateway programs.

One familiar example of a dynamic web page created by a
CGI request is the web search engine, Alta Vista
(http://www.altavista.com). After accessing the Alta Vista
web site, the user types keywords into a form, submits the
search request, and receives a document containing the
results of the search. If the user enters different keywords,
then the contents of the result page varies accordingly.

CGI Processing

The scripts that process CGI queries can be as simple or as
complex as required. In addition to data collected from the
user, information about the server, the client, and the brows
er is also made available to the script. A CGI query is sim-

March 1997

ply a string of characters (often called the "query string")
that contains the originating URL with additional informa
tion appended to it. This additional information often con
tains parameters specified by the user in the form "key =
value." For example, the key/value pair SSN ="123-56-8910"
indicates that the string "123-56-8910" should be associated
with the identifier "SSN."

Scripts can use the CGI query to tailor the response to the
user, based on the contents of the query string. In most CGI
implementations, the method of communicating data to the
script is somewhat primitive and has its origins in shell-script
programming on UNIX. The value of each key/value pair is
associated with a variable name defined by the key. These
associations are passed as environmental variables from the
server to the invoked script. The environmental variables
need to be retrieved by the script before they can be used.

Script Languages

Scripts can be written in any language that is able to retrieve
environmental{ariables, access other software libraries and
utilities, and easily manipulate text. A popular language for
writing such scripts is PERL (Practical Extraction and
Reporting Language). However, PERL has many drawbacks
including cryptic syntax, slow execution, and poor database
facilities and, because it is freeware, limited support.

Performance

As is well recognized, the evident simplicity of the CGI
mechanism has a price. Each time the server receives a
request to execute a script, the server must parse the CGI
query, enter variables into the environment space, and
invoke a process to run the script. On a heavily used server,
this overhead is often punitive, resulting in very poor
response times. Because of this, server manufacturers such
as Microsoft and Netscape have been quick to provide solu
tions in the form of proprietary server APis that offer
improved performance over traditional CGI. These APis
are sometimes referred to as Binary Gateway Interfaces
(BGI).

Microsoft Information Server

By employing the native API of Microsoft Information Server,
and using a dynamically loaded link library, a Web server can
provide a high-performance alternative to CGI.
Communication between the Web server and the M database is
via multiple, parallel TCP/IP connections. These are pre-con
nected to one or more M databases providing a pool of avail
able connections, which can be rapidly accessed under unpre
dictable web-server load conditions. Because the communica
tion is via the industry standard TCP/IP protocol, the M data
base or databases may be located anywhere on the network.

http:/ /www.mtechnology.org

A Web server can employ what is called a daemon process,
which runs in the M database environment. The daemon
spawns multiple server jobs, one per TCP/IP connection,
which are available to instantly respond to requests.
Requests arriving from the Web browser via the Web server
are parsed and made available to the M environment in the
local array called %. The invoked M program can access
these request parameters and produce the HTML response.
Writing to the current device generates the response. This
means that pre-existing programs that write data directly to
the screen may be ported to output their data to a Web
browser with little or no modification (especially if terminal
escape sequences have been abstracted from the implemen
tation and kept in a global).

In order to create a page with multimedia-rich content
including video, sound and ActiveX controls, all that is
required is that the references to the files containing such
data are incorporated into the generated HTML. The Web
server takes care of making the data available to the brows
er.

Programming HTML need riot be an onerous task. There
are many tools on the market that provide a WYSIWYG
("what-you-see-is-what-you-get") method of producing web
pages. However, HTML is so simple that a rudimentary web
page can be put together with just a few lines of code. A
good source of information on HTML is the Internet itself.
For example, the Beginners' Guide to HTML from NCSA can
be found at:

http://www.ncsa.uiuc.edu/General/Internet/WWW /HTMLPr
imer.html

The example below shows how to use the HTML form
method of formulating CGI requests that the Web server
understands.

1 <HTML>
2<HEAD> <TITLE>Test HTML
Form </Title> </HEAD>
3 <BODY>
4 <Hl> Testing M server Calls from a Form</Hl>
5<HR>
6 <FORM ACTION="bin/myApp.web?"
METHOD=POST>
7 <INPUT TYPE=HIDDEN NAME="EP"
VALUE="REG">
8 Enter your first name: <INPUT NAME="firstname"
VALUE="John" SIZE=50>
9 <P>
10 Enter your last name: <INPUT NAME="lastname"
VALUE="Doe" SIZE=50>
11 <INPUT TYPE=SUBMIT VALUE="Register">
12 </FORM>
13 </BODY>
14 </HTML>

M COMPUTING 31

In the following discussion, numbers in parentheses refer to
the line numbers in the example above. Note that actual
HTML scripts do not contain imbedded line numbers.

HTML forms allow users to enter data into text fields and,
via the mouse, select choices with radio buttons, check boxes,
and list boxes. It is important to note that data is not
processed until the form is submitted for processing by the
CGI script; this is usually accomplished by using a button ·
with a type of submit. When the button is pressed, user
information is encoded and passed to the CGI script for pro
cessing.

In this example, the lines (6-12) define the HTML form. The
action to be taken when the form is submitted is defined by
line (6). In this case, the configuration file is located in the
bin subdirectory below the root of the server. The file is
called myApp.web, and the method for invocation is POST.

On line (7) there is a hidden field. The value of this hidden
field is an identifier that specifies the entry-point of the M
routine that is executed on the server after the form is sub
mitted.

Line (8) specifies a text-entry field. The form displays the
text "Enter your first name:" and provides a text-input box
for the user to enter a value. The value statement specifies
a default value to associate with the variable named "first
name." Line (10) is a similar entry allowing the user to enter
his or her last name.

Line (11) specifies the "Register" button. The button's type
is SUBMIT, meaning that when pressed, any data gathered
from the user is formatted and sent to the web server. In this
case, when the form is submitted, the variables firstname and
lastname have the values specified by the user (or the
defaults) associated with them. Additionally, the value of the
hidden field, "EP," is passed to the server.

Processing on the Server

The previous section discussed how to gather user input in
an HTML form and described how this data is submitted to
the web server. This section explains how to write M rou
tines to access the information passed from the browser and
to format the HTML reply on a web page. A rudimentary
understanding of HTML and M scripting is again assumed.

In the previous example, values for the variables firstname
and lastname were gathered from the user. Additionally, a
hidden field called "EP" with the value "REG" was defined
in the HTML form.

When the CGI query containing these details reaches the
server, the server formats the data and passes it to the M
server for processing. The server performs a lookup on the

32 M COMPUTING

entry-point (EP) field and determines the M entry point to
be called. The M server then calls the specified M entry
point and waits for a reply from the M server.

In addition to the parameters specified by the user or in hidden
fields on forms, a number of other variables are also made
available to the M server. These variables contain information
about the server or the current connection. Some of these vari
ables are browser-specific. The variables provide informa
tion about the Web server and the client, such as the brows
er and HTML version that are supported. The client vari
ables are dynamic and change on each connection request.
Server variables, on the other hand, are static, at least for the
life of the connection between the Web server and the M
server.

Of course, the processing can be as complex as needed:
another form can be constructed and passed to the browser,
or a graphical ~eb page may be displayed.

An important point is that graphics, A VI files, Java applets,
and other non-text web components do not have to be stored
in the M database. They naturally reside on the web server
in known locations. All that is required to include those
components in the web page is to specify their locations by
including their URLs in the HTML produced by the M
script.

It is not necessary to construct HTML from scratch. For
example, a web page can be designed and constructed with
an HTML authoring tool. The web page could be designed
using a template with placeholders where,.;M data is to be
inserted. By placing the template in a known location on the
M server, the file can be accessed from M, data from the
database can be inserted into the correct place-holders, and
the resulting HTML document can be sent back to the
browser, all in a fraction of a second.

As can be seen from this discussion, the task of making your
data available to the World Wide Web with M technology is
extremely simple. Even better, you benefit from this sim
plicity without losing power or speed.

M Technology, with its recognized capabilities to develop
highly complex, high-performance and resilient systems at
relatively low cost, makes it an ideal technology for develop
ing Web applications. The rapid rise of the Internet, I
believe, has created a unique situation, in which the market
has moved to M Technology, opening up enormous possibil
ities for expansion of the M community.

M

Jamie Newton is Micronetics Design Corp. 's Project Manager for
MSM-PDQweb, the product that makes MSM databases accessible to
the World Wide U'eb.

March 1997

