
~

MANAGERS' FORUM

Street Latnps and Lost Keys

by Don Gall

Preface

There is an old story about a man seen crawling around on
his hands and knees under a street lamp. A crowd began to
gather, and finally someone asked him what he was doing.
He said he had lost his car keys, which caused several of the
more compassionate bystanders to join in the search. After
all, it shouldn't be difficult to find a set of car keys in a small
well-lighted area. After a thorough search, someone finally
asked the man if he was sure he had dropped his keys here.
The man then sl_eepishly admitted that he had lost the keys
down a nearby dark alley. Then why was he looking here
under the street light? Well, there was more light here!

The story may not be very funny, but it is allegorical. Over
the centuries, we have built entire areas of mathematics and
whole industries to help us find things under a street lamp
which were lost somewhere else.

Linear Ordinary Differential Equations

In my earlier years, I spent a lot of time studying and then
teaching students how to solve linear ordinary differential
equations. There was a period when I believed that the
LaPlace Transform would solve most of the problems here
on planet Earth. I subscribed to the John von Neumann the
sis that, given a sufficiently big and fast computer, we could
determine the effect that a butterfly flapping its wings in
California would have on the weather in Boston.

In graduate school, one of my first real world computer
problems was helping to design a device which would repro
duce one half of a cycle of an internal combustion engine at
the Sloan Automotive Laboratory at MIT1. The device would
take a piston from the bottom of its cycle to the top with its
velocity closely approximating the first half of a sine wave.
The device used a compressed air cylinder as its power
source. For obvious functional and safety reasons, it had to
come to a complete halt at precisely the right distance from
the tempered glass cylinder head. The device was to be used
with a high speed movie camera to film the combustion
process. The only thing that was linear about the equations
which described the dynamics of this process was that the
mass of the piston was constant. The equations were (gasp)
horribly nonlinear! So much for LaPlace.

http://www.mtechnology.org

My engineering career went from there to the analysis of
instability in hydraulic servomechanisms caused by stick-slip
friction (horribly nonlinear) to the six-degree-of-freedom
simulation of the maneuvering control of a submarine in the
ocean (also horribly nonlinear and random). Very few of the
real world problems that I worked on fit the linear model.
Was I just unlucky or is the world inherently nonlinear? I
could never manage to lose my keys under a street lamp.

What good is linear theory? If the problem that you are
working on fits the linear model, you are home free. The
more the problem diverges from linear theory, the less valu
able it is to you. The linear model allows us to get a firm
understanding of one part of the world. This, in turn,
enables us to extrapolate towards the quasi-linear and make
approximations to the actual solutions which we otherwise
would not be able to do. The major message is that if it is a
linear system, use the theory and the tools; it will make life
simpler and easier for you. If the equations are not linear,
find other tools or other ways to solve them checking your
results with the linear theory whenever possible.

The Development and Evolution of M

By now, you are probably asking yourself, What has this got
to do with M?

For those of us who were attempting to build medical data
bases in the mid-60s, there were no street lamps. We had
FORTRAN, ALGOL, BASIC and (God forbid) COBOL.
When I joined the Department of Surgery at the University
of Pittsburgh Medical School, one of my first tasks was to
create a database of all of the open heart surgery cases. We
ended up with a system written in BASIC on a DEC com
puter. Each patient data were stored as a large ASCII string
in his or her own separate disk file. There was a master file
which contained the file names of the individual patient files.

The good news was that the department was doing only 4 to
6 open heart cases per week. -The bad news, well, with the
tools we had at hand, almost everything was bad news.

By the early 1970s the word about a language called
[M]UMPS had gotten as far west as Pittsburgh. (As a his-

M COMPUTING 27

torical note for all of you young programmers, my under
standing was that an itinerant pots and pans salesman had
made it across the Alleghenies in a blinding blizzard with the
message.)·

The first version of M[UMPS] which I was able to use
allowed a choice of 26 global names ("'A through "'Z). It
ran on a PDP-11/something-or-other computer with 12K of
memory and somewhere around 160K of something that
resembled a disk. Everything but the amount of memory for
that computer has disappeared from my memory. I recall
the amount of memory, because I know it cost us $4,000 to
upgrade it from 12K to 16K. (It was that cheap because it
was previously used memory! New memory obtained direct
ly from DEC was over $7,000.)

Even this early version of M[UMPS] represented an incred
ible advance over the other computer languages that were
available for database management at that time. As
M[UMPS] evolved, it added increased functionality includ
ing the major step of the current B-tree global management
structure.

For the past 15 or so years, we in the M[UMPS] community
have had at our disposal a very powerful and efficient lan
guage and database management system which allows us to
model real world systems storing the data in any highly intel
ligent or ridiculously stupid structure that we can imagine.
What have we done with all this power? If there is one com
mon thread running through the M community, it is proba
bly a tendency to create data structures which best fit the
problem at hand. Why not? It is easy to do. It gives good
storage and retrieval efficiency. If the structure doesn't lend
itself to a report writer, so what; it is easy to write hard-wired
reports in M. The three most common comments about M
software packages are:

1. They were developed faster than it was thought possible.
2. The input and review screens are not as jazzy as they

should be.
3. The reporting capability is not all that good.

As in all communities, the M community feels better when
surrounded by others who think as they do. It amazes me to
hear a group of COBOL programmers postulating that since
there are more lines of COBOL code in existence than any
other single language, COBOL should be made some sort of
required standard language. (I must admit that if I were as

· prejudiced against minority groups as I am against the
COBOL language, I would be in jail now!) On the other
hand, I hear people in the M community saying that the
Window technology is wasteful and not important, that M
has little to learn from the inferior relational database tech
nology and that SQL isn't efficient enough to be of use.

28 M COMPUTING

Relational Database Technology

In many ways, the relational database model is analogous to
linear system theory. Both have an abundance of applicable
mathematics for support. Neither always represents the real
world. Although M can easily model structures which the
relational structure is poorly equipped to model, the rela
tional technology has one major advantage over M-the
extensive and robust technology that has been developed
around it. There is no way the much smaller M community
will overwhelm this extensive and widely-used technology.
We need to take advantage of this technology in areas where
we can and circumvent it in areas where it is not beneficial.

James Martin, in a recent book2
, makes some very interest

ing comments on the relational technology model. In
Appendix C of this book, Martin emphasizes the need to
avoid the relational model for complex data structures or
applications which have much data connectivity, in order to
improve performance. He cites examples of one and two
orders of magnitude increase in performance of non-rela
tional over relational databases. He also points out the
advantages of physical data clustering which can be obtained
by not using relational database structures. Martin stresses
that more sophisticated database structures are needed and
that they will coexist with relational database structures
rather than replace them.

About seven years ago, our M development efforts were shift
ed towards the use of object-oriented programming and rela
tional database techniques and tools3

• The Illethodology we
developed used data-typed attributes to definf relational views
of an M data dictionary. We have found that about 98% of our
data could be defined as normalized relational database struc
tures and simultaneously stored efficiently as clustered hierar
chical M structures.

Because law firms have been slow to adopt Windows
methodology, we decided to develop our initial object ori
ented programming version with a character user interface.
With less than 2 man-years of programming effort using
Borland Delphi development software, we were able to also
create a Windows interface which used the original database
engine. This gives us the capability of running character and
graphical user interfaces simultaneously on separate client
computers with both accessing the same data.

If we had been able to use the Delphi data-aware controls
which would allow Delphi to communicate directly with our
M database our efforts would have been significantly
reduced. In~tead, we had to write our own database inter
faces, many of which relied heavily on existing M routines, to
populate Pascal data fields from the M database. If we ha~
had an ODDBALL driver which could link to the Delphi
data-aware controls and which could either use M code to
efficiently access the M data or be able to choose from mul-

March 1997

tiple views to efficiently access the M data, our Windows
development would have been much faster and easier.

In a similar fashion, we need improved back end tools which
will enable us to provide relational views of our not neces
sarily relational data so that these data can be utilized by
many of the increasingly sophisticated reporting packages
such as Report Smith and Crystal Reports. These back-end
tools need to rise to the level of sophistication of the report
writers they interface with. This reporting capability should
be viewed as a fast and efficient standard rather than as
something to try if you don't have the time to create a hard
wired report.

Summary

The M community needs to develop new and efficient ways
to interface to the much larger world of relational database
technology and the tools and methodology surrounding that
technology. High on our list should be the development of
products to enable us to more efficiently link M databases to
products such aq_he Delphi data-aware controls. We need
to improve our ability to link to the many SQL products to
enhance the general reporting capabilities in our systems.

We in the M community have in front of us a rare opportu
nity. Many of the things that the leaders of the object-ori-

The
Opportunity

Fact 1

ented database movement would like to do with databases
can be done readily by M. We need to start viewing M as an
addition to and an improvement on the existing relational
technology. There is no reason to try to turn M into a rela
tional database nor is there a reason to expect M to ever
replace relational databases. If we work very hard, M as a
language and an object-oriented database will have an
opportunity to coexist with, improve the performance of and
expand the horizons of relational databases. M

NOTES

1. White, Pepper. 1991. The Idea Factory. New York, NY:
Dutton-Penguin Books USA. (see for example page 178.)

2. Martin, James and Joe Leben. 1995. Client /Server
Databases - Enterprise Computing. Upper Saddle River, NJ:
Prentice Hall PTR.

3. Gall, Don. "An M Implementation of Object-Oriented
Programming." M Computing 3, no. 1 (1995): 13-19

Don Gall is CEO of Omega Legal Systems in Phoenix, AZ and a
member of the MTA Board of Directors.

There are at least 1 billion lines of M code!

http://www.mtechnology.org

Fact 2
Object Technology (OT) is the future
of software development!

How will the 1 billion lines
of M code get to OT?

ANSWER:

EsiObjects™

II ESI Technology Corp.
5 Commonwealth Road
Natick, MA 01760
Fax: 508-651-0708

Internet: 73563.l50@compuserve.com

M COMPUTING 29

