
FEATURE ARTICLE

Titne for a Change - The Year 2000 Probletn

"by George James

For reasons that have been well reported in the general com
puting press many computer systems will have problems cop
ing with dates that are in the next century. This article
addresses the issue of whether and to what extent M systems
will suffer from this problem.

Will M applications suffer from the year 2000
problem?

Yes. Over the past few months we have examined many M
applications for ~ear 2000 compliance and, yes, there are sys
tems that do have a problem. The bottom line concerning
this problem is that there is nothing special about M appli
cations that makes them immune from this problem. In gen
eral, any programmed system that is involved in date-relat
ed processing could exhibit a year 2000 problem.

How big is the problem?

In our inspection of M applications we have seen problems
that range from trivial to serious. Here are some examples:

A database containing dates stored in YYMMDD format.

A date conversion algorithm that incorrectly treats the
year 2000 as a normal 365-day year. N.B. The year 2000 is a
leap year.

Input validation that contains a hard coded default of 19
for the century, whatever the current system date.

Sequential files for interfaces to third party systems with a
YYMMDD format date as part of their file name.

A date conversion algorithm that incorrectly returns
01/01/20 instead of 01/01/00 for 1 January 2000.

In some cases the problems are very significant, requiring
projects costing in excess of $250,000 and displacing other
planned projects for up to a year. In other cases the prob
lems are trivial and require nothing more than a few simple
bug fixes which can be implemented as part of normal sys
tem maintenance.

http://www.mtechnology.org

The Corned Beef Story

In 1995, a well-known British supermarket ordered a con
signment oflong life corned beef. On the same day that the
consignment was delivered t() their depot· the automated
stock control syst~ms flagged the whole lot for disposal
because .it \Vas past ifs "~~ll. by'1 date. The expiration date
1was ~d:u;rllj i11 {1:ilyeaf 2000./Fortunately the actual dis
posat p:rQy~s~ ,~as :ry.anU:~ @d th,e error was spotted before
5-p ton$of oorp:edbee.f were·. destroyed.

How big the problem is for your application will depend
upon factors such as how well your application was engi
neered in the first place, how well it has been maintained,
how tight the programming standards are and how well they
have been enforced.

Size is also an important consideration. We have recently
examined a very large M application (comprising over 20,000
routines) which, although very well engineered, is known to
contain a few isolated problems. How can they be sure that
they have found all the problems? The task of correcting the
problems in this particular case is trivial. But without exhaus
tive testing of the whole application how can they be
absolutely sure that all problems have been identified? This
is why industry estimates for the cost of year 2000 compli
ance is often so high. Up to 80% of the cost is actually going
to be for testing.

Do M implementations suffer from the year
2000 problem?

This is really a question that should be addressed directly to
the implementors. If you have a software product that is sup
plied by a third party, the recommended practice is to con
tact them and obtain a compliance statement. Therefore,
you should not only contact your M supplier but also your
operating system supplier and the suppliers of all other soft
ware that you use.

Our own investigations and testing have so far not uncovered
any major problems with current versions of the main M
implementations.

M COMPUTING 23

It is clear that if you are running old versions of M, then your
supplier may not be prepared to give any guarantees of com
pliance and may advise you to upgrade. If your business is
dependent upon your M implementation working correctly
through the year 2000 then this is good advice and should
ensure that you get the reassurance and support that you will
need.

Are M systems in a better or worse position
than other technologies?

On balance I believe that M systems are in a much better
position than systems developed using other technologies.

Given two similar applications written to the same software
engineering standard, one written using M and one using
some other comparable technology, the number of year 2000
problems within each application might be expected to be
about the same.

A large number of traditional systems were historically
implemented using a two-digit year to save disk space. By
contrast many M applications used the same date format as
the built-in $H date function and therefore avoid many of
the problems altogether. For this reason alone many M
applications will have significantly fewer problems.

Another factor that mitigates against many applications is
that they do not need to accommodate a large date range.
For example, MS-DOS only supports the date range 1980
through 2099. Because the origins of M are rooted in the
medical field there has always been a requirement to support
dates that are more that 100 years in the past (for patient
date of birth). This has meant that, at least for medical
applications, there has been tradition to use more than just

two digits to represent the year. Even where $His not used
as the basis for the date format (for example in FileMan) the
date format used is still able to support dates that span cen
turies.

Table 1 lists some examples of the effort involved in correct
ing typical year 2000 problems for an M-based application
compared to an application written using traditional tech
nology. The two major differences are that traditional tech
nology consists of separate source, object and executable
files, and that the databases are normally fixed length fields
in a rigid record and file structure. Both of these differences
make year 2000 projects more difficult for traditional tech
nologies. For very old and large systems these can be major
problems. By contrast, it is quite difficult to accidentally lose
the source code for an M program, and database conversions
by virtue of their dynamic nature are comparatively straight
forward (although by the same token, accurate file layout /
data dictionary documentation may be less forthcoming for
an M database).

Despite all this, it should not just be assumed that your M
application is OK. Many M applications use two-digit year
date formats for input and output and for interfacing to third
party applications. And even where $H style dates are used
there is no guarantee that the date conversion algorithms are
correct. The only way you can have any guarantee that your
application will work is to test it.

Are there any M-specific problems?

\;.:

Most of the year 2000 problems we have seen are indepen
dent of the underlying technology. These problems are
many and varied and include problems with the user inter
face design, ambiguity in the presentation of dates on

Comparison of Year 2000 Corrections between M and other Applications.
Type of Problem M Applications Other Applications

Error in date library function. Simple correction. Simple correction but may require
large scale recompilation. Source code may

not be available or previously compiled
with an earlier version of the compiler
etc.

Database conversion. a) Identify all date fields instances The solution will vary depending
within database. upon the technology used but typically:
b) Write and execute database a) Export the whole database.
conversion program. b) Update the database schema.

c) Import the whole database.
d) Recompile all programs.

Error in ad-hoc date manipulation Simple correction. Simple correction.
within a program.

24 M COMPUTING
Table 1

March 1997

reports, errors in leap year calculation algorithms and inter
faces to third party systems.

There are however, a small number of problems that are only
to be found in M applications. For example, one feature of
M which may well give rise to a number of problems is the
way that the $ZD function and other vendor-supplied date
functions operate.

$ZD is available in most M implementations and exhibits
similar characteristics in each implementation. It is a func
tion that converts a date in $H format into a date in human
readable format. For dates between 1900 and 1999 it returns
a date in MM/DD/YY format. For dates after 1999 it returns
the date in MM/DD/CCYY format, i.e. the year includes the
century. It should be stressed that this is a documented fea
ture of the way that the $ZD function operates and not a
bug. Unfortunately it is not an obvious feature and many
programmers who have used $ZD in their applications will
have been unaware of its behavior. The following code
example, which was found in a real application, illustrates
what can happen:

-"'I.

s date=$zd($h)
s yymmdd= $tr("123456" ,"34/56/12" ,date)

When this code is run on 1 January 2000 the variable yym
mdd will contain 200101 and not 000101 which was expected
by the programmer.

The Credit CardStory.

Many ofth~ banks thaLissue Vis<1- cards cannot process
cards withan expfration date after 1999 .. Everyone knows
that cteditc:ard~ have an expiration date stamped on them
in MM/YY format; so youwould not expect such an obvi
ous thing to causeJtproblem. Each issuing bank has devel
oped its OWJJ.. card authorization system arid some of them
reject cards Fifhcan expiration year ofO0. Until such time
as Visa is cohfidentthat its c~ds can be processed, it is.not
issuing cards ,with an expiration date later than 12/99. As
an inpt::ntive, any bank that cannot process Visa cards cor
rectly ~{tetlMarch 1997 co.uld be fined up to $100,000 by
Visa. . . . - .

Another example of how problems can arise with M con
cerns the treatment of leading zeros. If dates are represent
ed in YY format, then performing arithmetic calculations
when the year is between 00 and 09 (for examples yy=yy+ 1)
will result in the loss of the leading zero.

A third class of problems with M applications relates to the
conversion of dates from external format to internal format
(e.g., MM/DD/CCYY to $H). Such conversions need to take
account of leap years. Table 2 summarizes the rules for
which years are a leap year. For most (non-medical) appli-

http:/ /www.mtechnology.org

cations that deal with contemporary dates (say 1980 through
1997) a simple leap year algorithm is sufficient. The formu
la Y#4 is adequate to determine a leap year for all dates in
this range. As it turns out, because the year 2000 is a leap
year, this formula will actually work right up to 2099.

Most M applications, however, need to deal with a much
greater date range (say 1850 through 1997). Because 1900 is
an exception to the general leap year rule a slightly more
complex leap year algorithm is required, typically using Y #4
and Y #100. This will result in correct dates for all years
from 1601 through 1999. However, to work correctly for the
year 2000 a third condition is required based on Y #400.
Without this condition a date conversion algorithm will not
correctly identify the year 2000 as a leap year.

Because of the need to handle dates prior to 1901 in medical
applications, most M date algorithms contain both the Y#4
and Y#l00 clause but do not necessarily contain the Y#400
clause. In some cases they do contain the Y#400 clause, but
because it has never been executed, it has not been tested
and does not work correctly. This is clearly an area of
potential trouble for M applications. Testing for correct
treatment of the year 2000 as a leap year should be part of
every M application's year 2000 test plan.

Leap Year Rules

The following three rules define which years are a leap year.

1. Every fourth year is a leap year (e.g. 1988, 1992, 1996)

2. Except every hundredth year which is not a leap year (e.g.
1700,1800, 1900)

3. Except every four hundredth year which is a leap year (e.g.
1600,2000,2400)

Table 2

What are the issues affecting VARs?

For V ARs the year 2000 issue is magnified by the fact that
they support multiple customers and because software is a
key component of their business, the down side of being non
year 2000 compliant can be much greater. The following list
indicates some of the areas where V ARs may be affected by
the year 2000 problem:

• Support
There is likely to be a large support hit at the end of the cen
tury as year-end processing coincides with a multitude of
large and small year 2000 problems both with the V ARs' own
supplied software and with third party interfaces, operating
systems, etc. This will be compounded by the fact that all
support staff will either be on vacation or hung over.

M COMPUTING 25

• Contractual Problems
For customers who are not under a maintenance contract
and perhaps purchased a system several years ago, do you
have any liability if the software is not year 2000 compliant?
Do you have any obligations to correct possible defects
either before or after the event?

• Upgrades
If your applications are not currently year 2000 compliant
and you need to upgrade your customer base, do you have
the time and resources to upgrade all your customers
between now and then? You may need to upgrade your cus
tomers sooner than you think if your application deals with
future dates (for example, patient appointments may be
made up to a year in advance).

• Litigation Risk
How confident are you that your applications do not have a
critical year 2000 bug? If your application failed, could your
business survive litigation from multiple customers? Can
you afford not to perform year 2000 testing?

• Internal Systems
While the applications you supply are obviously of primary
importance, have you examined your own internal systems?
You should check your fault logging and tracking systems,
configuration management systems, project planning and
scheduling systems, software licensing systems, accounting
and billing systems, etc.

• Customer Assurance
Are you prepared to respond to inquiries from your cus
tomer base concerning year 2000 compliance? Many organi
zations are starting to send out preliminary questionnaires to
their suppliers requesting compliance information. Will you
be able to reassure your customers? Will you be able to back
up this reassurance with documentary evidence in the form
of test plans and results?

• Competitive Advantage
If your competitors are able to claim year 2000 compliance and
you cannot, then you may be at a competitive disadvantage.
Conversely, if you have a good story to tell then you may have
the advantage. Many organizations are now including year 2000
compliance as a mandatory requirement in their procurement
process.

Conclusion

M applications are probably in much better shape than applica
tions developed using traditional technology. However, this
does not mean that the problem can be ignored. The fact that
many M users are VARs means that the problem must be taken
seriously. There are very real commercial consequences of not
being able to respond well to their established and prospective
customer bases.

26 M COMPUTING

Any M application could contain a year 2000 problem. The
only way to know whether your application has a problem is

to test it thoroughly. M

George James is president of George James Software, a London
based company that supplies re-engineering and configuration man
agement tools and services to M users. The company is currently
working with a number of organizations to help them address their
year 2000 problems.

M[UMPS] by Example
by Ed de Moel

Need to know how M can be used?
Need lots of examples to show you how?

M[UMPSJ by Example is your answer!

Price: Nonmember $45.00
Member $35.00

See page 39 for ordering information.

First there was MUMPS
\;.:

then there was M

Now coming soon to an M shop near you

Nathan Wheeler & Co., Ltd.
THE UNAPROGRAMMERS

RATEDM

M Programmers and Information Systems Consultants

Must be over 21 or have your manager's approval
(773) 862-1092

Fax: (773) 862-6117

Nathan Wheeler & Co., Ltd.
1351 N. Wolcott

2nd Floor
Chicago, IL 60622

We'll be back

March 1997

