
FEATURE ARTICLE

What CORBA will Mean to the M
Cormnunity
by Erik Zoltan

What is CORBA?

C0RBA is a standard object-oriented architecture that per­
mits communication between many different kinds of appli­
cations in a distributed computing environment. C0RBA is
an emerging data interchange standard that has been
embraced by the Department of Defense (DoD) and has
gained ever-widening acceptance within the computer indus­
try.

The primary benefit of C0RBA is a high degree of interop­
erability. Interoperability refers to the ability of different
applications to work together. There's not much difference
between the words "interoperate" and "cooperate."
C0RBA is a complex standard comprised of many technical
details. But without getting technical, the following diagram
illustrates the essence of C0RBA.

Message

Client Object ORB $etv.er Object

An Object Request Broker (ORB) distributes messages
between application objects in a highly interoperable man­
ner. The Common Object Request Broker Architecture
(CORBA) specifies a standard ORB for communication
between any two objects in a distributed computing environ­
ment. The basic idea is simply that one object sends a mes­
sage to another and receives a response back via the ORB.
For the purposes of that particular message, the sending
object is called the "client," and the receiving object is called
the "server." But most objects function as both servers and
clients of the ORB.

C0RBA was designed to be independent of any specific pro­
gramming language, operating system, hardware platform,
or network configuration. An object's interface is defined
with an object-oriented Interface Definition Language
(IDL) that can be used in conjunction with almost any pro­
gramming language. As a result, C0RBA is language-inde­
pendent, permitting seamless interactions between objects
created with different programming languages.

C0RBA is very flexible. There are two basic ways for objects
to communicate with each other: statically (in which the

10 M COMPUTING

objects know about each other's capabilities beforehand,
communicating in pre-arranged ways) and dynamically (in
which the objects determine each other's capabilities at run­
time, using this information to determine how they can best
communicate). The static method is like talking to an old
friend, while the dynamic method is like meeting someone
new on the street, discovering they are from Paris and pulling
out a French phrase book. Both methods may be necessary
in a distributed environment where a diverse blend of objects
can be encountered.

Will CORBA Work with M?

No existing M system currently offers C0RBA support. ESI
Technology Corp. provides an object-oriented M (00M)
system called Esi0bjects™ which already supports Windows
Object Linking and Embedding (OLE), a competing 00
standard. The DoD has awarded a six-month contract to add
C0RBA interoperability to Esi0bjects, opening up existing
M databases to the next generation of data interchange stan­
dards. This project is already under way, s5'C0RBA will be
available very soon.

But merely supporting C0RBA is not enough. Existing M
applications and databases are not object-oriented, so it is
inherently difficult to get them to interoperate smoothly in
an object-oriented environment. (The same issue comes up
when interfacing M with Windows OLE.) It's easy for objects
to communicate with each other, because they share a com­
mon set of design principles. M applications have very dif­
ferent design principles, making interoperation trickier.

Technical observation: an object-oriented application may
use thousands of different objects to represent the informa­
tion normally contained in a single M global database file­
each entry in the database is an object that might contain its
own component-objects, and the database object itself
requires a number of different component-objects to store
and index these entries. An 00 application working with a
database naturally expects to communicate with many differ­
ent objects, each having a clearly-defined role with no dan­
ger of overlap. But M systems just aren't designed that way. In
M, a single global can contain one or more entire databases,
and any routine can modify any global node.

March 1997

Simply put, the problem is that M brings everything together
into an integrated whole, while 00 systems divide every­
thing up into discrete, modular components. (This is not a
criticism of either approach-the important point is merely
that the two approaches are irreconcilably different.)

Message_ . OOMWrapper
~

~

ORB .
Client Object

◄·············· ◄········"···"·· IM Data/Appl Response

In an OOM system the M database/application can easily be
given an object representation (known as a wrapper). In this
way, it can act like an object to the outside world, making any
unit of M data indirectly capable of responding to (and initi­
ating) communications via the ORB.

OOM programmers use virtual objects to create these data­
base wrappers. Each virtual object is associated with a spe­
cific global location (a single file, a single record, a single
field within a record, etc.) and provides an object-oriented
representation of the information and functionality associat­
ed with that item. Since they are extremely lightweight, vir­
tual objects can be generated "on the fly," as they are need­
ed, with very little overhead.

To illustrate this, let's very briefly see how an external pro­
gram might communicate with a typical M Patient File glob­
al using CORBA and virtual objects. In the following exam­
ple, all the communications would occur via the ORB, which
has been omitted in order to simplify the diagram.

Lookup (Age, Condition)

External 1 -. 1

Object GetE!emen'

r-------,
I I

, Virtual I
I I
, Patient f·• ..
I . I ·· ..
: File , ··-... __
L---..----.J ···

retnrn ::....---..

List

return

·•,:.\.

M Global
Patient Data

.--~
i------7 .. -············
: Virtual : -····
I Patient f
I I
L------..1

Let's suppose that medical application needs to update the
status of the patient records for those patients over 65 who
have Alzheimer's. An external object might communicate
with a virtual PatientFile (representing a patient global),
requesting those patients over 65 with Alzheimer's. The vir­
tual PatientFile object would then send back a List object.

http://www.mtechnology.org

The external object would interact with the List to get at the
virtual Patient objects inside. Modifying a virtual Patient
object would result in changes to the global location(s) it rep­
resents.

The bottom line is this: any system that wishes to provide a
general solution to the important task of interfacing M with
object-oriented standards such as OLE and CORBA must
address two critical issues: the first is supporting the stan­
dard, and the second is making M routines and globals work
like objects in the external system.

M•Solutions Industry Solutions

CORBA will provide a conduit between the M world and a
much wider arena of emerging industry solutions. This will
allow M systems to benefit from many new resources, while
also making M solutions available to a broader audience.
The power· and flexibility of M will make it very competitive
in this arena, if it can be "tamed" and made to conform with
the standard object-oriented expectations and requirements.
And-as shown above-OOM appears to be the most natur-
al way to accomplish this. M

Erik Zoltdn has been programming, writing, and teaching in the M com­
munity for the last 7 years. He is now also teaching EsiObjects TM program­
ming classes and is involved with the DoD contract for COREA connec­
tivity to EsiObjects TM for ESI Technology Corporation in Natick, MA.

M[UMPS] by Example
by Ed de Moel

Need to know how M can be used?
Need lots of examples to show you how?

M[UMPSJ by Example is your answer!

Price: Nonmember $45.00
Member $35.00

See page 39 for ordering information.

M COMPUTING 11

