
MTOOLS 

Integrating MUMPS and SQL 
A System Architect's Overview 

W Lyle Schofield 

Abstract 
Many systems developers are currently trying to integrate 
MUMPS technology to non-MUMPS technology. Relational 
databases represent unique challenges due to the structural 
differences between relational (SQL) and hierarchical 
(M/MUMPS) structures, and most users desire to tightly 
couple the databases. This document presents an overview of 
this topic, focusing on architecture alternatives and general 
decisions to be made by the designers. 

Introduction 
There was a time when many of us enjoyed the luxury of 
working in environments where applications ran on a single 
processor with all the source code in a common language. 
Over time we watched this genetically pure system invaded 
by purchased executable files with no source code, split into 
multiple processors, then clustered and LANed into multiple 
operating systems. Most recently, end users have replaced 
their terminals with workstations so that they could do word 
processing while entering data, and are now demanding inte
gration with their departmentally developed Access applica
tions. As we look into the future of object oriented, web
enabled, network computers we begin to wonder about the 
place for MUMPS in this next generation of applications. 

Regardless of protocols and methodologies, source code is 
source code and there continues to be appropriateness for 
MUMPS development. Obviously, legacy system support 
and legacy system integration will continue to occupy pro
grammers' time. MUMPS will also enjoy its traditional 
advantages of modest hardware requirements for multi
threaded high volume processing. As "4Ge technology 
becomes more common and development tools more graph
ical, MUMPS also carves out a new niche as a development 
environment that supports data structures as well as low level 
device support in a single environment1. And of course, 
MUMPS evolves and features yet unknown will be added to 
the language. 

So life with MUMPS continues, but the environment is now 
the heterogeneous client/server model common in both large 
and small organizations. The challenge is to share MUMPS 
data with non-MUMPS data, most commonly SQL databas
es sold by Oracle, Sybase, Informix, and others. SQL helps 
simplify all these different products by providing a somewhat 
standard programming language2. Several MUMPS features 

38 M COMPUTING 

and add-on products provide connectivity paths. But the 
design process for a project linking these environments has 
many alternatives, and live installations are trade secrets or 
small in scale. 

This article hopes to outline alternatives for linking MUMPS 
to SQL and some major considerations for application 
designers. 

User Requirements 

Any application development process must begin with the 
question of "what is the problem we are trying to solve?" The 
answer needs to be a specific statement of work, and should 
avoid the vague need to make a "better" system on a "main
stream" product. Organizations that frame problems in this 
way are doomed to Word and Excel macros as the answer to 
all their problems. 

The job of the designer is to coach users into stating their 
problems with specific references to organizational chal
lenges: a need to move data electronicall:r,.cprovide less data 
entry time, allow data analysis in a more flexible way. 

Ultimately, the linking of MUMPS and SQL is an applica
tion development project to integrate. The business needs 
driving this tend to group into the following categories: 

• Provide A Reporting System 
• Integrate Data from Applications 
•Move Data (One Way) Between Systems 

Provide A Reporting System 

Any organization that is proficient at collecting data will ulti
mately want to look at all the data they have collected. Many 
applications provide tools for this, and at some point tools 
become outdated or not as flexible as needed. 

There are several ways to solve this problem. The most obvi
ous, especially for a homogeneous MUMPS shop, would be 
to install a MUMPS-based reporting tool. There are several, 
some even using SQL syntax, and most offer high perfor
mance and can be supported by existing programming staff. 

Sometimes resources consumed by report generation can 

December 1996 



impact the operational needs of a system. You can upgrade 
your system, or install a second system to provide resources 
for reporting, removing this demand from the operational 
system. A brute force approach would be to install a second 
MUMPS system, and copy your operational back-up files to 
the reporting system. This is an easy snapshot of the system 
from some point in time, and the development effort to 
implement this tends to be little or none. 

If a separate reporting system is being set up, it does not have 
to be MUMPS-based. It could be based on some other data
base technology, like SQL, using some other reporting tools, 
like the dozens of SQL-based tools currently available. 
There is additional development effort to export and import 
the data, and to define data structures for holding data on 
the SQL system. 

Perhaps the need to improve reporting is due to data existing 
on two or more hosts, some MUMPS, some SQL. The 
reporting system will now need to talk to both technologies, 
and the need to integrate MUMPS and SQL is obvious. The 

· reporting function could be happening in MUMPS, with 
MUMPS reading-through to SQL, or the reporting function 
could be happening in SQL, with SQL reading through to 
MUMPS. 

As the environment grows, SQL could be the common pro
tocol talking to MUMPS and SQL. SQL vendors are cur
rently providing many new workstation-based graphical 
tools, providing powerful analysis as databases grow past ter
abyte sizes. 

Integrate Data Between Applications 

In many organizations, best-of-breed applications have been 
selected to solve specific enterprise or department needs. 
Some might be MUMPS-based, some might be SQL based. 
At some point it may be a requirement to move data elec
tronically between systems. 

For example, patient demographic information may be rep
resented on multiple systems. If an address change is made 
on one system it would be nice to migrate that change to all 
other systems containing this information3. 

Users will have to decide how real time this information 
exchange needs to be. The solution could be interface, imme
diate movement of data between systems, or interchange, 
moving data in a timed batch. 

Move Data (One Way) Between Systems 

There may only be a need to move the data in one direction. 
Many organizations are deploying data warehouses for 
archival and analysis work. In this application data will be 
sent from MUMPS or SQL systems to another system 

December 1996 

(MUMPS or SQL ). The designers of the data warehouse will 
design their own data structures optimized for the ware
house function4• Data will be packaged up and sent to the 
warehouse, through a batch transfer or possibly a real time 
interface. Data is not created in the data warehouse or sent 
back to other systems. 

A one-way interface may also be needed as programmers 
prepare to migrate data to a newly engineered application. 
An organization may decide to move from one technology to 
another based on long-term strategic plans. An interface is 
designed to run once as users are migrated to the new ver
sion of the application. 

Integration Points 

We have discussed why we need to integrate. Before we get 
into the details of how, we need to show where we can inte
grate. 

First, we will provide the following 
diagram to represent any system. 

Any system can be conceptualized 
as functional layers. I have chosen 
four for this discussion. 

The network layer provides physical 
and logical connectivity between 
computers. 

The operating system manages the Fig. 1 System Layers 
resources of that computer. It man-
ages tasks, memory, provides access to the network and 
other hardware components, and other administrative trivia 
like keeping track of the time. 

The database layer stores data. It allows multiple processes to 
save data, examine data, and allows programmers to define 
the structure of this data. This would be the global variable 
component of a MUMPS system, and the SQL component of 
a 4GL system. 

The application logic layer defines how elements of data 
interact with users. In a MUMPS system this would be pro
gramming that defines types of data, edit checks on that 
data, and other logic that makes up the application. In an 
SQL system this is the stored procedures, triggers, and data 
types that define the relationships between the data. 

Any of these layers can be integrated with their associate on 
another machine, as in the diagram on page 40. Network 
integration is the only function of the network layer. Physical 
connectivity is done through compatible wiring and connec
tors, and protocols define how the electronic squirting 
around the wires are interpreted as data and addresses. 
Developers assume that the networks wiH provide needed 
services and usually don't write applications with specific 

.M COMPUTING 39 



.. 

.. 
.. 

Fig. 2 Integration Layers 
networks in mind. While there are interesting things hap
pening on this level, they have little impact on the design of 
the application. We will assume that a network engineer will 
write an article explaining this layer in great detail. 

Operating system layers are generally not integrated. In a 
clustered environment, the operating system is very tightly 
integrated with another system, with different members of 
the cluster sharing information on processes and resources. 
Again, this is not of much interest to the application design
er since we will assume that the operating system will work 
as advertised and we will refrain from the desire to change 
programming of the operating system. 

The database layer does allow integration between systems, 
and this is of interest to the application designer. MUMPS 
can integrate with SQL on this layer through products that 
allow MUMPS data to be defined with a relational view, then 
share this information with other SQL engines. 

The application layer also allows integration. Transactions 
can be defined to the different systems which can be used as 
integration points. These transactions may be well-known 
such as HL7, ASTM, and other vendor-independent proto
cols, or custom for the specific application. There is also a 
product niche referred to as integration engines tool kits and 
CASE tools that facilitate integration on this level. 

The database and application integration layer will be exam
ined in more detail, with additional discussion on middle
ware. 

Database Layer 

Database integration has been accomplished through a number 
of methods. 

MUMPS-to-MUMPS integration can be easily achieved 
through proprietary vendor links, or through the OMI non
proprietary protocol. This allows high performance cluster
ing of MUMPS resources as well as application integration. 

SQL-to-SQL integration has been accomplished through 
similar methods. Vendors offer proprietary links between 

40 M COMPUTING 

separate systems running their products, and provide non
proprietary links through ODBC or similar protocols to 
share data between different vendors' products. 

To get MUMPS integrated with SQL systems, there needs to 
be some common denominator. Either SQL needs to under
stand OMI, or MUMPS needs to understand ODBC. Given 
the ratio of OMI systems to ODBC systems it is not surpris
ing that the latter approach is available . 

The main obstacle to having MUMPS and SQL share data is 
the structural differences in how they store data. MUMPS 
uses an hierarchical storage technique with its global variable 
arrays, while SQL uses the relational model of two-dimen
sional tables containing columns and rows. Regardless of 
vendor product selected there is a need to map MUMPS 
data structures to the relational model. Each MUMPS-to
SQL product contains a tool to do this, where a programmer 
who understands MUMPS structures and also understands 
the relational model creates a map of global variables to 
SQL structuress. 

Once the model has been created it can be used by develop
ers on the MUMPS system for application and report devel
opment. It can also be used by an interface to serve SQL data 
to the rest of the network. Commonly, ODBC is used as a 
transport for this data, although some products support spe
cific vendor network proprietary interfaces, such as Oracle's 
Oracle Call lnte,face (O<;:I). 

When MUMPS has been mapped and can serve its data rela
tionally on the network, it now looks like any other SQL 
database to ODBC. To the database clients, MUMPS pro
vides data just like Oracle, Microsoft's SQL Server, or 
Microsoft Access. This opens up many reporting tool possi
bilities for the client workstations. Users can use Microsoft 
Access for a user-friendly ad hoc reporting tool. MUMPS 
data can be used by Oracle Explorer and data mining tools. 
Programmers not familiar with MUMPS can now pull data 
off the systems using SQL tools they are comfortable with. 
And MUMPS programmers now have access to non
MUMPS data floating around the organization. 

Application Layer 

It is possible to integrate systems on the application layer, 
where programming is developed to import and export the 
data across some agreed protocol. This can be done through 
a batch file transfer process, or through a real time link. 
Integration can be achieved regardless of operating system 
or database technology as long as the developers are able to 
agree to a protocol and implement it. 

A batch transfer is an obvious way to implement this link. 
Assuming that there is not a need for real time integration6 a file 
format is agreed to by all systems sharing data. Developers write 
code to export to the file format and import into the database as 
needed. It is also possible to integrate this way with applications 

December 1996 



that do not support any integration protocols, such as using a file 
export utility from a desktop application. 

When immediate integration is a requirement, applications 
will need to have an integration point created for them. 
These take the form of a remote procedure call (RPC) which 
is a "published" interaction with the application. This could 
be a simple call posting a query and receiving acknowledg
ment, or a more complex interaction that posts a database 
change and follow-up messages. 

This type of approach allows programmers to centralize 
database changes through common transaction processing, 
using the same logic for database changes coming from the 
network as those coming from locally attached users. There 
is also an ability to provide higher performance than a data
base-to-database binding, since the RPC would be a terse 
transaction that could accomplish many database changes. 

Vendors of integration engines are using this approach in 
many cases. Integration Engines come in two flavors: a soft
ware flavor, such as ISG's CorVision, or a hardware flavor, 
such as STC's Da{aGate. The software version is more of a 
developer's tool kit to provide application integration ser
vices with an assumption that there is already a physical con
nectivity path. The hardware version sells a box to plug in 
multiple networks providing the physical path, with the soft
ware version added to perform the application integration. 
Note that the hardware version might be overkill if there is 
already physical connectivity. 

The next diagram shows how an integration engine might 
attach two different LANs where there are currently incom
patible application interfaces. 

The process of designing an application interface is much 
like the process of designing a user interface. Designers and 
users need to come together to define what data is passed 
through the interface and how the interface is responded to. 
Based on those specifications, the "client" and "server" soft
ware is written on both sides of the interface. 

This type of interface also has interesting ramifications for 
future system modifications. Much like the process of defin
ing the database integration using a relational data map pro
vides the ability to add any client on the network that is 
ODBC-capable, the development of the application inter
face allows any client following the RPC protocol to interact 
with the interface. For example, an RPC could be developed 
that allows an SQL system and a MUMPS system to share 
data. A programmer could also write a Visual Basic applica
tion that acts as an interface client, providing a true 
client/server version of the application. 

In the figure 3 above I specifically list that applications are 
running HL7 and "not HL7" to highlight the application 
integration of the engine. HL7 is a vendor-independent 
interface for health care. It defines typical information used 

December 1996 

--. 

Toi<an P.ing 

-~~----. ~, 
II 

VAX Runn;ng HL7 

-ii] 
IBM AS,400 

running non•Hl 7 

~ -----1g 
~~;~~~~ 

l11tegrati?n Engine--: 

Provides physical 
integration cf toke:, ring 
to ethernet. routing from 

' ::, one LAN to another, 
and app!lcation 
integrat;on of HL 7 to 
proprietary 

Fig. 3 Integration Engine Providing Application 
Integration 

in hospital information systems, such as patient demograph
ic information and patient discharge information. There are 
other such interfaces defined, such as ASTM for lab equip
ment and ANSI X.12 for health care financial information. 
While it is hard for the interfaces to be defined as rapidly as 
the changes in systems and data evolve, there are obvious 
application interface advantages for using these standards. A 
vendor has the ability to define one interface and support it, 
and not worry about custom interfaces to other systems. 
Other developers can take advantage of these interfaces for 
supporting legacy system integration, or supporting integra
tion to home-grown systems. 

As industry standard interfaces develop the need for inte
gration on the application level is "built in." 

Object Brokering 

Looking toward the future, there is a lot of movement 
toward Object Orientation (00) for development tools and 
as a development methodology. The complexity of merging 
this change with client/server development has led to the def
inition of network objects, or the ability to provide data 
resources on a network in an object oriented fashion. 

There are a number of products on the market that allow 
client/server development using object oriented methodolo
gies. Most of them provide object services between the client 
and a middleware server, and the middleware server talks to 
a DBMS server on the back end running a relational engine. 
This allows object based development for the client, a mid
dleware component that serves business logic, and deploy
ment using a three-tier architecture. There are several char
acteristics of this approach. 

Object Development The goal of object orientation is to allow 
easier re-use of source code. While a detailed explanation of 
00 technology is beyond the scope of this article, 00 shifts -M COMPUTING 41 



the focus of developer from huge code listing of logic to 
codelettes that define the unique properties of the object at 
hand to other objects. The object at hand inherits the prop
erties of objects it is inside of. When we define the date-of
service object as being inside the encounter, the date~of-ser
vice object inherits the pointers to patients and facilities 
defined for the encounter. 

The re-use of code is a part of the development environment, 
and not a separate library to be found and attached. The gener
al weakness of code libraries in other environments is that it is 
sometimes not easy to find a function that has already been 
defined. The previously completed definitions in an object envi
ronment are part of the application that can be seen on line with 
the development tools. 

Fault Tolerance Most implementations of object middleware 
support multiple middleware servers with object replication. In 
the event that a middleware server goes down the clients shift to 
another server. 

Application Partitioning In a multi-tier deployment, develop
ers using non-object tools often have to decide which ser
vices run on which tiers. The act of deciding which parts of 
the application (presentation, business logic, database, etc.) 
run on which layer is often referred to as partitioning the 
application. Making a wrong call can result in poor applica
tion performance. Often, it is hard to predict the future bot
tlenecks of a complex client/server application once network 
equipment and traffic are thrown into the equation. 

High end object/client tools may have a dynamic partitioning 
feature. This allows the network administrator to decide 
which parts of the application run on the servers and which 
parts run on the client. This ability to tune on the fly, com
bined with the ability to throw additional middleware and 
database servers into the system, allow powerful scaling and 
tuning after deployment. 

While these features show the direction software develop
ment is headed in enterprise-class deployment, there are 
some issues. The most obvious are the costs of deployment. 
With training, higher level hardware, additional servers and 
server software, and client license costs, projections of more 
than $1000 per client for software and upgrades are not 
unusual. More importantly, most of these solutions are pro
prietary to their vendors, locking developers down the ven
dor's path for the time being. Given the small market pene
tration of these tools at this time, early adopters may be liv
ing with "bleeding edge" issues depending on selection. 

There is movement to provide industry standards to network 
objects. Two initiatives, Common Object Request Broker 
Architecture (CORBA) from a consortium of vendors and 
Common Object Model (COM) from Microsoft, are trying 
to define the ability to query the network for object informa
tion. This will allow application developers to write applica
tions without any regard to their location on physical clients 

42 M COMPUTING 

and servers, and the network protocols will find the service 
and provide it. 

To relate this back to MUMPS and SQL integration, SQL 
vendors will have integration to this environment as they 
aggressively move to include object tools with their products, 
and the object middleware vendors have already implement
ed into SQL database engines. MUMPS could provide SQL 
services through the ODBC binding, although there does not 
seem to be much value added to this arrangement. As an 
alternative, MUMPS could participate in the CORBA and 
COM initiatives. This implies that object features are rolled 
into the MUMPS products. We shall see where MUMPS 
vendors go with this. 

Additionally, a third party could write a CORBA server for 
MUMPS. Similar to the SQL translator that sits on 
MUMPS, an object and object broker could be written to sit 
on top of MUMPS. 

Engineering Decisions 

After understanding implementation paths for integrating 
MUMPS to SQL, we need to list the pros and cons of the dif
ferent approaches. 

The single biggest cause of failure in projects like this is not 
having a full understanding of application requirements. It is 
important to understand the needed integration, as well as 
presenting the true costs and time frames for implementing 
the solution. 

\;.:: 

Perhaps the biggest issue to resolve is the need for real time 
integration. There can be a large difference in cost and time 
for providing an import/export utility versus a real time net
work transaction engine. If data needs to move, but can wait 
anywhere from five minutes to a day, a batch process can usu
ally be developed more easily than an SQL database map. 
With the ease with which files can be moved between systems 
and easy access to scripting tools to automate this process, 
moving import files between systems is not a bad alternative. 

The second question to answer is "what are the existing 
interfaces"? Many applications already provide some elec
tronic connections. These were either developed to support 
conversion to the system when installed, or to support elec
tronic data interchange or other integration. For example, if 
the vendor has already provided an HL 7 interface, take 
advantage of it. Either write an HL7 jnterface for the second 
system, employ an integration engine to attach the HL7 
interface to another one, or attach the two HL7 interfaces 
that were there all along! If someone else has written the 
code for you, use it. 

After answering the questions and documenting the design, 
you are faced with the decision of whether to integrate on 
the database layer or the application layer. 

December 1996 



The database layer has some obvious attractions. MUMPS 
vendors support tools to let you develop the relational view 
of your application. There are a bazillion and three ODBC
compliant tools and applications (based on my last survey), 
many of which users are familiar. And connectivity to the 
SQL engine gives you access to a host of modern, visual 
development tools, including those that do not have visual as 
part of their names. 

There is one major disadvantage to the database integration 
method. As seen earlier in our diagram of database integra
tion, the databases are talking to each other. But when appli
cation users are shown we see that they attach to the appli
cation logic layer. The implications are that application logic 
must be kept in synch between the two systems. 

For example, when MUMPS wants a piece of data from the 
SQL machine, such as a person's physician, it will ask the 
SQL machine and receive a reply. But what happens when 
the MUMPS machine tells the SQL machine to change the 
physician to a specific value? The SQL machine will have to 
perform the edit checks to make sure this is a valid selection. 
The application ,!Qgic on the SQL machine will have to exist 
in the MUMPS machine to make sure the database logical 
integrity is insured. This is a similar issue to client/server 
applications where the client is "fat," meaning that the client 
contains business logic such as edit checks and filing rules. If 
the application changes, the updated software must be dis
tributed to all the clients in order for them to work correct
ly. If you pursue a strategy of database integration you will 
need to make sure the relational table map on the MUMPS 
system reflects any changes made in the database. You may 
also need to make sure SQL programming changes are made 
if the MUMPS system has logic changes made. 

There are work-arounds for this issue. One of the databases 
could be made "dumb," a physical repository with no checks 
on certain areas of the database. Or users could be instruct
ed to enter information on one machine and not the other. 

If the purpose of integration is for reporting only, this issue 
goes away. The server (MUMPS or SQL) is integrated on 
the database level, but configured so that the data is read 
only. Users can pull data from the machine and the data will 
not be harmed by incorrect business logic during filing. 

Based on requirements, an application level integration may 
be more attractive. 

If there is an existing interface on one system or the other, 
write to that interface. An integration engine will shorten 
development time with the tradeoff being additional cost 
and management. Remember that with some integration 
engines you are paying for features (support for token ring, 
for example) that may not be needed. At the same time, you 
may also receive interface definitions already defined by the 
vendor. 
During the design process, examine your existing application 

December 1996 

for services that could be utilized by another interface. Are 
the parts of your application that make database changes 
written in a clean, transaction processing-type convention? 
This makes it easy to attach another interface, and also sim
plifies maintenance. 

If you are writing a background process that will provide 
interface services, what are the expected volumes? If this will 
be a high volume service make sure you plan for multiple 
processes. Also make sure that you provide auditing of the 
activity of the processes. If it difficult to debug an application 
that only reads and writes to a network port, trap as much 
information as you can afford to, 

As you compare creating a database link to an application
link, remember that there are other advantages to the work 
of building a relational map along with the integration. 

The relational mapping tools will provide access to new 
development and reporting tools. Both the KB/SQL-based 
products from KB Systems, Micronetics, and Oracle as well 
as the M/SQL product from InterSystems have an SQL 
reporting tool attached. As mentioned earlier, this can be a 
solution for ad hoc reporting as well as production reports 
created by programmers. Additionally, the M/SQL product 
is integrated with a form generator and routine editor to pro
vide SQL tools for application developers. 

The exercise of mapping MUMPS data relationally will pro
vide experience porting the application to an SQL system. 
This may help in an effort to move applications to this plat
form, or may provide evidence that redeveloping the appli
cation in SQL does not offer significant advantages. 

As a final comment, please note that many off-the-shelf inte
gration products may not have much of a track record, or 
may have limitations on how high you can scale them. Make 
sure you check on the product's installation history and com
pare this to the expected transaction volume for your site. 

Conclusion 

While this article was kept at a high level, it is hoped that it 
has provided an overview of issues related to integrating 
MUMPS with SQL systems. 

A MUMPS-to-SQL integration project is like any other pro
ject; good requirements definition and planning will lead to 
success. Also remember that there are many alternatives to 
linking MUMPS to SQL. List each alternative that meets the 
requirements, list the costs associated with each possibility, 
and perform the cost/benefit analysis. M 

REFERENCES 
1. 3GL platforms often call into 4GL environments using an API to 
manipulate and examine data structures. Similarly, 4GL program
ming environments often call out to 3GL code to talk to hardware 
and perform CPU intensive tasks. Many components of enterprise 

M COMPUTING 43 



applications such as interfaces and file import/export, can easily be 
implemented in MUMPS with quick access to data structures as 
well as simple commands (OPEN, USE) to control peripherals. 

2. Of course, many vendors have their own extensions .and flavors 
of the SQL standard. From a programmer's standpoint this is no 
more annoying than different versions of MUMPS. Systems 
Management issues are another story (skills do not easily translate 
between vendors' products) and visual development tools that 
extend basic SQL functionality vary widely. 

3. In some industries vendors are addressing this through the defi
nition of independent interface transactions. This will be discussed 
later. 

4. A data warehouse is simply an application after all, with its own 
design criteria. 

5. This is not often a trivial job. A typical MUMPS application will 
contain repeating structures inside repeating structures. A literal 
translation of this often results in sub-optimal relational defini
tions. 

6. Although if the batch can be processed fast enough, it can be 
close to a real-time link. 

7. This is probably part of the attraction of the "thin" client or "net
work computer" (NC), a PC running a web browser and JAVA or 
ActiveX as client software. Software, while not always running on 
the server, is always fetched from the server. This makes for a sim
ple software distribution model in a client/server world. 

Lyle Schofield is VP of Consulting Se,vices at Sentient Systems, Inc., 
He can be reached at: 
lyle@sentientsystems.com. 

Advertiser Index 

We appreciate these sponsors of the July issue and all the 
companies who support the M community through their 
commitment to excellence. 

Atlas Development Corporation . . . . . . . . . . . . . . . 5 
Business Logic, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Career Professionals Unlimited ................ 47 
Collaborative Medical Systems . . . . . . . . . . . . . . . . 19 
Cue Data Services, Inc. . . . . . . . . . . . . . . . . . . . . . . 25 
Data Innovations, Inc. . . . . . . . . . . . . . . . . . . . . . . . 11 
ESI Technology Corporation .................. 54 
George James Software, Ltd ................... 6 
Henry Elliott & Company .................... 1 

Cover4 
InterSystems Corporation .. , ............ 29,47,53,54 
KB Systems, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Micronetics Design Corporation ............... Insert 
MUMPSAudioFAX . . . . . . . . . . . . . . . . . . . . . . . . . 4 
Nathan Wheeler & Company ................. 53 
Science Applications International Corp. . ....... 54 
Sentient Systems ............................ 8,55 
System Resources Corporation ................. 21 
West Virginia University Hospitals . . . . . . . . . . . . . 29 

This index appears as a service to our readers. The publisher 
does not assume any liability for errors or omissions. 

44 M COMPUTING 

Announcing: A New Distance Learning 
CourseonM 

Available On the Internet: A llial Offering 

Courses on M are usually available at scheduled times and 
scheduled places. These schedules do not often fit precisely with 
the needs of the student. In an effort to increase the opportuni
ties for learning about M, the University Extension Division of 
the University of California, Davis, is planning to offer a 10-
week course in beginning and intermediate M programming on 
the Internet. This class will be "taught" by Dick Walters, who 
will use materials from courses he teaches at UC Davis, tutori
als offered at the MTA annual meetings over the past few years, 
and material from the revised version ofTheABCs of MUMPS, 
due to appear in early 1997 under a different title. 

The class will begin with basic concepts of programming, and 
move into features that make M such an effective tool for text 
manipulation and data storage. Students will learn how to write 
useful programs in M, and move on to questions of modular 
design, package development, and advanced features of M. 

Course materials will be made available in part by a mail ship
ment of exercises and other reference materials, and in part 
through resources on the Internet. Students enrolled in the 
course will receive an account on a class computer and be given 
access to teaching materials stored on-line and accessible 
through the Internet and World Wide Web. 

An important component of the learning process will be use of 
a new communication tool: the Remote Technical Assistance 
(RTA) package. Using this package, students will be able to 
send both deferred complex messages (including screen snap
shots, file attachments and sound clips) w»ich can be annotated 
by the instructor and returned to the student. Live interaction 
will also be possible at times when both student and instructors 
are both on line, with whiteboarding, sound messaging and 
WWW URLs invoked by the instructor on the student's screen. 
Group discussions between students and instructional staff will 
also be provided. The RTA package is operational on 
Macintosh computers and will soon be running on both PC and 
UNIX client systems. A UNIX server is used to store class lists, 
teaching resources, messages, dialogs and other results of inter
active conversations. 

This course represents something of a new experiment in sever
al respects, since neither University Extension nor the instructor 
have attempted a course with quite this format before. For that 
reason, the first group of students signing up for the course will 
be able to take it at a very low cost (amount yet to be deter
mined). Their experience will be used to create a course that 
will be made available over the Internet on a self-paced basis. 
For further details, send email to: walters@cs.ucdavis.edu 

Dick Walters, Department of Computer Science 
University of California 
Davis, CA 95616 
fax (916) 752-4767 
(no voice messages please) 

December 1996 


