
MTOOLS

Modularization: A Key Com.ponent of
Structured Program.m.ing

by Rod Fulton

Ihave been programming for eleven years. The last ten of
those have been in M and have involved mostly mainte­
nance programming. As a result, I have become very

familiar with unstructured spaghetti code. I've even written
some of it myself. I did this for several reasons:

• The block structured DO was not available and consequent­
ly GOTO's were required to simulate it.

• There was no simple, straightforward way to scope vari­
ables. The NEW command and parameter passing took care
of this.

• Efficiency constraints forced (or so I thought) the conser­
vation of bytes by putting as many commands on a line as
possible and minimizing the length of variable names and
labels.

• I thought that comments were useless since they didn't
have to be accurate. The interpreter ignored them, and pro­
ducing them took up valuable programming time. I also
believed that only wimps needed comments to understand
code. Of course, I was wrong. Today, they are an integral part
of my design and coding processes. If I can't describe an M
process in English, then I am usually not clear about it, and
I need to go back to the drawing board.

Why I Write Only Structured Code

Five years ago, in 1991, I realized the error of my ways and
became a fanatic about writing structured code that is easily
readable and maintainable. This happened when what an old
timer had warned me about as I was just starting out as a pro­
grammer finally happened. I needed to modify a program I
had written but hadn't touched in months, and I couldn't
make any sense of it. I couldn't read my own code!

Since that day, I've changed the way I do things. I approach
computer systems with the attitude that the most expensive
component is the programmer and that everything possible
should be done to maximize his use. This means using only
structured programming techniques so that others can read,
maintain, and modify programs as easily as possible.

26 M COMPUTING

Modularization

In producing structured code, one of the key components is
modularization. To do this, you must be on the lookout for
things you have done before or that you will do again. I'm not
talking about single commands but sets of commands.
Sometimes, but not often, these things are done exactly in
the same way and can easily be made into a separate routine
or function. Usually, however, they aren't exactly alike but
are so close that if you think about them a little (or a lot), you
can figure out how to abstract them to a level that will work
in all instances.

These sets of commands or actions fall into two categories.
There are those that are specific to a particular product,
operating system, or company, and there are those that are
universal and can be used by most M programmers on any
system. While there are more of the first category on any
given system, I will concentrate on the second category
because it will allow me to present examples that are ger­
mane most anywhere. If you develop a fflime of mind that is
always looking for patterns, you will start seeing them every­
where and can start modularizing your system.

An Example

The Manual Method

Consider the situation where you need to set several vari­
ables to values of pieces of another variable. Usually this is a
global variable but it doesn't have to be. It almost always has
more than one level of delimiters, and these delimiters and
their priorities are standard throughout the system. Let's
assume that the program we are working in will be fed the
variable person which, if referring to me, could have been
created by the following line of code:

s person="Fulton;Rod"'713 Heavens
Dr,Apartment 3; Mandeville;LA;70471"'(604)

845-1892; (800) 759-8074; (818) 356-
0479"

The delimiters, in order of precedence, are: " A ;,". Assume
that we want all of the pieces of information placed in indi-

December 1996

vidual variables so we can do whatever with them. The fol­
lowing is the way most people would do it:

s last=$p($p(person) ,•A•),";")
s first=$p($p(person) ,"A",",2)
s street1=$p($p($p(person,"A",2) ,";") ,",")
s street2=$p($p(person,"A",2),";") ,",",2)
s city=$p($p(person,"A",2),";",2)
s state=$p($p(person,"A",";",3)
s zip=$p($p(person,"A",2) ,";",4)
s country=$p($p(person,"A",2),";",5)
s phone1=$p($p(person,"A",3),";")
s phone2=$p($p(person,"A",3) ,";",2)
s phone3=$p($p(person,"A",3) ,";",3)

Anyone looking at this chunk of code would have a little bit
of work to do to make sure that everything was coded cor­
rectly. There are eleven lines of code that have to be deci­
phered-one for each SET command. You need to make
sure each source and target variable is spelled correctly. In
addition, there are twenty-two $PIECE functions. You need
to make sure that they each reference the proper piece.
That's a lot of work. What do you do if these same variables
are set the same way in other routines?

The First Pass at Abstraction and
Modularization

The next step is to create a separate routine that does noth­
ing but set these particular target variables. If person is not
always the name of the source variable, you could parame­
terize it so that it can be called from anywhere.

We have actually come up with a good solution for unload­
ing this particular source string. What about other source
strings? You could write a similar routine for each one. But
first, remember that I said that the source variable is actual­
ly a global variable. In the example I gave above, I didn't say
so but if you look at what it contains, it's pretty clear that per­
son was probably set to the value of all or part of a global.
Now, stop and think about all of the individual global nodes
in the system you work on. It's very likely that you have hun­
dreds, if not thousands of them. Do you want to write indi­
vidual routines for unloading each of them into standard
variables? I doubt it.

Complete Abstraction and Modularization

What if we could write a routine that would work with any
target string? We would have to tell it the source variable and
the target variables. We would also have to figure out a way
to tell it which pieces of the source string belonged to which
target variables. I'll show you how it works later but the fol­
lowing will work:

December 1996

d
Asetvars("last;firstAstreetl,street2;city;
state;zip;countryAphonel;phone2;phone3A",
person)

The first parameter is a map of what variables we want and
where they are located. The second parameter is the source
variable. This certainly makes it much easier to read and
write in-line code than the original manual method. This is
similar in functionality to an extension to the language
offered by InterSystems' DataTree product but it differs
quite a bit in that it can deal with sub-delimiters and that it is
portable to any ANSI M system. Notice that I've unloaded
all of the variables. I could write the routine so that it only
sets the variables I specify, which is not an uncommon thing
to do. Suppose that we only want the name and phone num­
bers. The following is an example of how to use it to do this:

dAsetvars("last;firstAAphonel;phone2;
phone3A",person)

I mentioned the delimiters that are used in this system. I
have written the routine to automatically use them. But what
about those cases where different delimiters are used?
Wouldn't it be nice to be able to override them? This can be
done by allowing for an optional third parameter which
would contain the delimiters, in order of precedence, to be
used. If no third argument is supplied, the routine will auto­
matically use the default delimiters.

The following routine (see next page) walks through the variable
string, delimited piece by delimited piece. When it finds a non­
null piece it uses that as a variable name and sets it to the corre­
sponding piece of the source variable string. Null pieces of the
variable string are ignored.

If the list of target variables includes ''var," vars," "dat," "data,"
or delims, a forced error occurs. If these are variable names used
in your system you can change them in "setvars. You can also
specify whatever default delimiters you want.

Benefits of Modularization

• More readable programs. Programs that use modularized
code, whether in the form of programs, as shown here, or in the
form of extrinsic functions, are easier to read. For one thing,
they simply contain less code. For another, it is easier to see the
big picture in what such programs do because the nitty-gritty
details are not cluttering up the code.

• Smaller programs. As we write new programs, they will be
smaller and quicker to produce and contain fewer logical and
syntax errors.

• Few errors. Because you are writing less code, you are going
to make fewer mistakes.

M COMPUTING 27

Source code for Asetvars

setvars(vars,data,delims) ;RLF;02:10 PM 22 Sep 1996

;This routine sets the variables in 'vars' to the corresponding values in 'data'. It runs off
of what is in 'vars'. Null pieces in 'vars' are skipped even if their counterparts in 'data' have
data. This allows you ;to retrieve only the variables you want.
Variables

;defined in 'vars' are set to null if their counterparts in 'data' are null.

;The variables 'vars' and 'data' are the strings to be processed.

;The variables var' and 'dat' are their respective heads as delimited by the first character
of 'delims'.

;The variable 'vars' can't contain the following strings: 'vars', 'var', ;'data', 'data',
or 'delims'. If you think about it you can see that this will cause nothing but trouble. Since

this routine is not interactive the only thing to do is have it self-destruct when this
;occurs.

n var,dat

s: '$d(delims) delims="";,"

s var=$p(vars,$e(delims))
s dat=$p(data,$e(delims))

s vars=$p(vars,$e(delims),2,511)
s data=$p(data,$e(delims) ,2,511)

Protect these variables

default delimiters

set the heads

set the tails

i var="vars" ! (var="var") thendie Force an error if var is pro
;hibited variable name

i var="data"! (var="dat") thendie
i var="delims" thendie

i var=$tr(var,delims) s:var]"" Ovar=dat
e d setvars(var,dat,$e(delims,2,255))
d:vars]"" setvars(vars,data,delims)

; Base case
; Recur

;Next piece
q

• Less code to manage. By modularizing whenever possible,
you will decrease the amount of code on your system. The
number of programs will increase, but they will be smaller,
simpler, easier to understand, and easier to modify.

• Modifications are easier. This is because you've isolated
functionality. When you want to change something, you only
have to do it in one place. This is not really clear from the
example I gave because once you implement it on your sys­
tem, you won't need to change it. However, most systems,
including yours, have activities that are done the same way by
similar code in several different routines. Modularization
lets you identify, isolate, and standardize them.

Drawbacks

The only possible drawback may be efficiency but you shouldn't
be concerned with it. The thing to do is use modularization with
other structured programming techniques to produce an under­
standable and modifiable system. And sooner or later, every sys-

28 M COMPUTING

tern will need to be modified. Usually sooner. And usually
often. If you concentrate on efficiency, you will end up in over
you head very quickly. You will have to tell users that you can't
provide changes they want. You may not tell them the truth
about why you can't make the changes. You may not tell your­
self either. You will be afraid of the side effects because you
won't be sure of all the things you will need to change. Even
when you will be able to make desired changes they will take
orders of magnitude longer than necessary. The company will
end up spending more money on your low productivity than
will be offset by purchasing faster computers. Besides, many
efficiency techniques are dependent upon hardware platforms
and the implementations and versions of M and the operating
system.

If you do end up with a system that is unacceptably slow, you
will probably have to break the rules by tweaking code for effi­
ciency in only one or two places. In the example I have given
here, A setvars is thirteen to twenty times slower. But so what!
If you implement it everywhere and your response time is too
slow, you were either on the verge of overloading your system

December 1996

j
L

l
_]

anyway, or, more likely, you have one or two batch programs
that call "' setvars thousands or hundreds of thousands of times.
These programs could be moved to off times if possible. If not,
then they could be tweaked by using the manual method of set­
ting variables that "' setvars replaces. In such cases, document
the source code to explain why you have done this.

WHICH DATABASE
Conclusion

Modularization is an important part of structured program­
ming. It helps you create understandable and maintainable sys­
tems. I have given you an example of modularization that will
work on your system. I have walked you through the process of
creating it. If you put yourself in the frame of mind where you
hate doing things more than once, you will start seeing possibil­
ities for modularization in your own system. If you start taking
advantage of them, in a few months you will find that your pro­
ductivity has increased. A1

IS B[HIND TH[BIGG[Sl
AND fASl[Sl INl[GRAl[D
CLIENT /SERVER
NETWORKsl

'"'\

Rod Fulton is a consultant specialwng in M He can be reached at:
fulton@cs.tulane.edu or at 1-800-759-8074.

IIIIIPSsystems Programmer
The ideal candidate will have a
Bachelor's Degree in Computer
Science, a minimum of two years
experience in applications develop­
ment and one year experience in
mainframe environment. MUMPS
experience is required, health care

and/or COBOL experience is pre­
ferred. Responsibilities include
providing backup support to all lDX
MUMPS applications, developing
new "in-house" MUMPS applications,
and providing operations level sup­
port for the VMS operating system.

Vl\t Systems Programmer
The ideal candidate will have a B.S.
Degree in Computer Science or
equivalent experience, a minimum or
two years in VMS systems manage­
ment. Position requires knowledge­
able experience of DCL, RMS,

December 1996

DECNET, and LAT in a DEC VAX/
ALPHA environment. Systems tun­
ing, TCP/IP and MUMPS system
management is preferred_

Benefits
WVUH offers a competitive salary and
an exceptional, flexible benefits package
including: Tuition Reimbursement,
Dental/Vision Spending Account, Child
Care Assistance, and On-Site Day Care
Center.

For immediate consideration, please call

1-800-453-5708
or send resume to

ia
WEST VIRGINIA

UNIVERSITY HOSPITALS
Personnel Services, Dept. 8121
Morgantown, WV 26506-8121

EOEM!FN/0

A1 COMPUTING 29

