
MTOOLS 

A Tool for Basic Progratntner Training 

by Jay Hocott 

11e purpose of this article is to introduce teachers, 
mstructors, or activity leaders who are tasked with instill­
mg sequential disciplined thinking in young people to a 

programming language particularly suited to this goal. The 
name of the language is M, formerly called MUMPS. It is often 
considered by some to be a niche language used primarily in 
the medical community. In reality, it is more than a language, 
rather it is a superior database engine. It resides in a niche not 
because of any limitations of the language itself, but because it 
lacks exposure to the computing community as a whole. It is 
frequently disparaged and dismissed as somewhat of a dying or 
dead-end language by those who have not kept up with its 
development and by those who fail to understand its power and 
applicability. It is an ANSI standard language whose strengths 
are character string manipulation and data storage and 
retrieval. We "MUMPSTERS," or perhaps I should say "M­
sters," have a tendency to laud its strengths to each other, 
preaching to the choir, as it were, enhancing the niche image. 
Hopefully this article will help spread the word while aiding 
you in your educational effort. 

In the incubation period between the commitment to write this 
article and actually beginning work on it, I ran across a thought 
that to me had power. The thought itself is not new, the way it 
was expressed is what impressed me. I share it with you hoping 
it will be as germane and powerful for you as it was to me: 

"First, the author's protagonist was quoting a Park Ranger on 
grizzly bears. The Ranger described the animal as being nine 
feet tall, weighing a thousand pounds or more, ill-tempered, 
and could run faster than a human for short distances. He cau­
tioned his listeners not to approach the bear. Then he offered 
this advice if chased by a grizzly. 'Your best chance,' he said, 
'was to climb a tree.' If there were no trees close enough, then 
drop to the ground and play dead. The bear would, hopefully, 
just sniff around and perhaps turn you over and soon lose inter­
est. However, this was entirely up to the grizzly and each bear 
was different. 

With a knowing grin the Ranger went on to say that most of 
those listening would remember this for a while, some might 
even make notes. The chances were, however, that unless they 
really appreciated the danger, they wouldn't remember this 
advice if they were charged by a grizzly bear. They'd panic and 
run for their lives even though they'd just been told that the 
grizzly was considerably faster that they were. But, he said with 

22 M COMPUTING 

a grin, if there was any one of his listeners who had actually 
been chased by a bear, that listener would remember the 
advice and drop to the ground as if shot, instantly. 

Then the protagonist drew this conclusion. 'Specific advice is 
something I give only when asked. Like teaching, advice is 
wasted until the listener already has a vital reason for wanting 
to know it. When that's true, then suddenly that knowledge 
makes immediate sense to them. But until that moment of 
recognition, all they've gotten from me is a bag full of words. 
They may listen to those words. They may even write them 
down; but until it connects with something important to them, 
what they hear is just words.' "[1] 

The obverse side of this coin is the thrust of this article. Not 
only do we have to make our curriculum germane in the man­
ner of the above illustration, we need to purify the task of intro­
ducing computer programming concepts of as many arbitrary 
definitions as possible. A classic example would be COBOI:s 
environment division, and more currently, the definition of file 
organization techniques; sequential, indexed sequential, ran­
dom, etc. The beginning student, especiallf"'the young student 
without much life experience, has no hooks on which to hang 
this information. He/she is not yet being chased by this partic­
ular bear. So the task changes from turning them on to not 
turning them off. 

The concept of a variable is the first turn-off usually encoun­
tered. Some students never absorb this concept. Others, who 
seem to grasp the concept, fail when variable types are intro­
duced. That makes as much sense to them as me hitting you 
with the statement that pink widgets can only go into green 
blivits. The survivors then are hit with type and dimension 
statements with rigid and arbitrary rules. Far too many times 
his/her eyes glaze over, and that student becomes convinced 
that he/she cannot do this thing. This belief, either that he/she 
can do or cannot do a thing, almost certainly determines the 
outcome of the instruction. The M language avoids every com­
plication to the concept of a variable by its "untyped" variable 
structure. The concept of a variable is then simplified to be the 
name of a place that may store data, without conditions 
imposed by variable types. 

Many computer concepts are accepted rather than understood. 
An interpretive language aids in achieving that acceptance. A 
variable, or other concept, can be immediately and repeatedly 

December 1996 



demonstrated until the acceptance or understanding comes. 
While M is obviously not the only interpretive language, it has 
several useful attributes. In direct mode, a line of code may be 
typed as part of a routine, stored in a buffer, then saved and 
executed later, or the same code snippet may be typed for 
immediate execution. A single keystroke defines the mode, 
there is no need to change windows, use function keys, exit an 
editor, or take any attention-diverting action. Using this alter­
nating mode capability, the teacher can demonstrate, and the 
student can verify and validate, the effect of each statement or 
segment on the variables or process being investigated. This 
immediate identification of correct or incorrect assumptions 
facilitates rapid concept formation and avoids false or ambigu­
ous concept absorption that must later be located and correct­
ed. This technique allows the limits of an operation or com­
mand to be studied, increasing understanding. M's dual modes 
that allow for either immediate or delayed statement execu­
tion, have a high value in getting a point across the communi­
cations gap between teacher and student. 

A challenge, issued as an opening remark to beginning stu­
dents: "Name the five things a computer can do" produces 
silence. After a whi)f, frequently a long while, someone will 
usually "break the ice" and suggest that a computer can add. 
Then other arithmetic operations follow. The disappointment 
is palpable when told "That's one, a computer can do arith­
metic." Decision-making usually is the next thing identified. 
Sometimes, input/output is recognized. Data storage and 
movement usually must be coaxed from the class. The ability to 
stop and handle an interruption must be presented to them. 
Again, immediate mode best demonstrates data input, output 
and storage. Arithmetic and arithmetic expressions are also 
easy to demonstrate. M operates in strict left-to-right order 
that removes the need for introducing the complication of a 
hierarchy of operations and provides a good platform to show 
the effect of parenthetical expressions. M has a special variable 
that contains the result of a logical (If) expression. Thus, the 
more difficult concept of logic can be made visual by examin­
ing M's truth variable. The especially difficult concept of a 
truth value can be demonstrated until acceptance comes. The 
ability to see the yes/no value of the truth variable enables the 
student to recognize the pattern of defining "truth." 

In short, all the "bricks and mortar" necessary to build a com­
puter program can be easily demonstrated. It seems, however, 
that I recall a story about being chased by a bear. Even if the 
student knows the length, width, depth, texture, color of a brick 
and has similar knowledge of mortar, he/she has never seen 
anything made from these materials. Some scenario must be 
chosen for computer application. A real danger exists in that 
the application will be so trivial [as] to be irrelevant. Any sig­
nificant application has to involve data storage and retrieval. 
This is frequently accomplished by data stored as part of the 
program, again trivializing the example. How much more real­
istic and useful to concept formation would [be] retrieving data 
from a permanent repository? It is seldom done due to having 
to introduce arbitrary file organization and techniques or sim­
ply presenting data handling code as a given. Using M, the 

December 1996 

commands to handle data in program variables are used iden­
tically to handle data on disk. Data can be retrieved from disk 
and placed in a program variable with a Set command. Data 
can be stored on disk from a program variable by changing the 
order of the operands with the same Set command. This abili­
ty to fetch and store data from disk enables the course content 
to be made meaningful to the student. He/she can see the 
checkbook, or the address book, or another entity that is real 
to him/her, that can be built with all this ''bricks and mortar" 
stuff. The ability to use meaningful data in a realistic applica­
tion without a plethora of arbitrary rules that must be accept­
ed without understanding, empowers the student to take con­
trol of the computer. The young student responds to this 
power. The freedom to create from his/her own imagination 
can establish the foundation to understand the need of organi­
zation techniques and structure rather than to present them as 
rules that exist just because somebody said so. 

Computer programming can be divided into two broad groups, 
scientific or engineering applications and business or commer -
cial applications. If you plan to launch your own satellite or 
write arcade games, M is not for you. However, if you want to 
know about your customers, patients, inventory or products, 
the advantages of M become readily apparent. Customers and 
patients have names and addresses, products have descrip­
tions, specifications and locations. These data are examples of 
character strings. In fact, the ability to manipulate character 
strings all but determines categorization of a program into the 
broad groups above. M is THE string manipulation language. 
It was designed from the ground up to be a string manipulation 
language. It has every string manipulation function you can 
imagine, all syntactically simple and logically easy to under -
stand. 

The M language has a free-form syntax. This syntax supports 
program structure but does not enforce it. The lack of structure 
enforcement removes a significant level of complexity in form­
ing concepts about elementary computer functionality. 
Structural rules and discipline can be introduced as the student 
gains confidence and capability. Using this procedure, struc­
ture is seen as good technique and as a productivity tool 
instead of some arbitrary set of rules that interfere with coding 
flexibility. The discipline required to write structured code can 
be introduced at the time the student is capable of accepting it. 
Just like the good advice about grizzly bears, it can be timed 
appropriately. 

The concept of data storage is virtually a "blackbox" in other 
database implementations. Data stored by M is visible to the 
student. The student may control the way in which data are 
stored. Different storage schemes may be evaluated. The stu­
dent can navigate through the open array data storage provid­
ed by M. ·He/she can evaluate the effect of storage schemes on 
retrieval effectiveness and can design his/her own data struc­
ture suited to his/her process. The visibility of stored data 
allows the student to appreciate the value of raw data in diag­
nosing problems and debugging programs. The student gains 
insight into the relationship of data to programmatic process­
es. 

M COMPUTING 23 



OK! So Mis easy to teach, aids in concept formation, supports 
realistic applications, easily stores and retrieves data from disk, 
and manipulates strings. Assuming that you are convinced that 
M is the best language for training programming to program­
mers, so what! Few, if any, teachers would select or create a 
curriculum based solely on how easy it was to teach or to learn 
for that matter. Selecting M as a beginning language will do all 
the above. However, the reasons for using M are the best rea­
sons for teaching M. M is a superior database engine. It is 
faster and more efficient than any other database. As men­
tioned earlier, it is an ANSI standard language, continually 
evolving to the state of the art. M supports visual interfaces and 
open database queries. In short, M has the necessary attribut­
es to be the future standard for data storage and retrieval. The 
primary reason for teaching M is its applicability to "real 
world" situations, an important bonus is that it is well-suited as 
a primary training facilitator. 

How will teaching M benefit your student? Admittedly, M is 
not as widely used as many other computer languages. There is 
a demand for M programmers now and the demand is growing. 
The demand is also worldwide. Even if your students never 
work in M, many advantages still accrue. The first computer 
language learned is the most difficult. Basic concepts unique to 
computer programming must be formed. 

These concepts are independent of the language used to devel­
op a program. Similarly, basic techniques must be developed. 
Insights into computer behavior must be acquired. A beginning 
student has much to absorb. It makes good sense to ease that 
assimilation in every way possible. M does exactly that. 

For additional information on M, contact the M Technology 
Association, Micronetics Design Corporation, InterSystems 
Corporation, or Greystone Technology Corporation. Both 
Micronetics and InterSystems offer no-cost implementations 
of M that run on an IBM compatible. The Micronetics product 
is called MSM-Student and can be downloaded from their Web 
site. The InterSystems product is called DTM Student. Both of 
these products are full implementations of the language. They 
are restricted somewhat but the restrictions are based on size. 
No restrictions are placed on the functionality of the language. 

Finally, I offer my personal assurance of your satisfaction with 
M. I have taught computer programming since 1960 to both 
young and not-so-young students. I conducted classes in 
COBOL, FORTRAN, RPG, Basic dialects, macro languages, 
and several assemblers in addition to M. M has been, by far, 
the most easily absorbed and has produced the greatest success 
ratio. On request, I will make available a syllabus for a begin­
ning course in M starting with a "checkbook" example and 
extending into an elementary cost distribution and accounts 
payable application. A very elementary data dictionary is 
developed and used for file maintenance. 

M Technology Association 
<http:\\members.aol.com/mtal994/mta.htm> 

Micronetics Design Corp <http:\\www.micronetics.com> 

InterSystems Corp. <http:\\www.intersys.com> 

24 M COMPUTING 

Author: jayhocott-mail.snider.net 
M 

REFERENCES 

l. Other by Gordon R. Dickson 

Jay Hocott was the Training Coordinator for the Little Rock VA 
Medical Center in charge of training 4000 employees in the use of 
the DHCP system and is now retired. He also supported major 
portions of VA 's DHCP program from 1984 through 1995 includ­
ing the VA Kernel and FileManager. He has been in computer 
programming and education since 1960. 

1997 MTA Annual Conference 
May 18-22, 1997 

Boston 

MUMPS in BOSTON 
CONTRACT & PERMAMENT 

We understand that the kef to success 
is working with talented professionals 
on cutting-edge projects, for custom­
ers who appreciate the best. Business 
Logic's professional staff is trained to 
seek those opportunities that combine 
all factors for optimum results. 

Please call or send your resume today 
to Stephen Wood, or visit our web site 
to see all our job listings. 

00000001 800-411-2444 
00000001 617-391-7322 
OOOOOOl 1 fax 617-391-2381 00000111 
0001 1 1 1 1 e-mail: swood@blogic.com 
1 1 1 1 1 1 1 1 www.blogic.com 

Business Logic, Inc. 
Contract and Permanent Personnel 
121 Mystic Avenue, Medford MA 02155 MemberofNACCB/EOE 

December 1996 


