
MTOOLS 

''Slap a GUI on It'' 
Your M Future Will Be Easier if It's Object Oriented 

by Erik Zoltan 

Can M evolve to use Windows effectively? Yes it can, qut 
the rapidly increasing complexity and more exacting 
user demands in this high-productivity environment 

have placed an entirely new kind of challenge on the language. 
To meet these challenges, M developers must be able to incor
porate the best features of environments like C++, Visual 
Basic, Delphi, and Java without sacrificing the traditional 
strengths of M-its power, flexibility, and simplicity. 

Of course, the current "stampede" to Windows has raised con
cern, among some, about the future of M. Originally designed 
as an operating system, most modern M systems have an arms
length relationship with the host system, which has been 
viewed as something essentially foreign. Now that the com
puter industry is converging, with a single operating system 
poised to achieve clear dominance, many are wondering about 
the long-term ability of M to exploit the inherent power of the 
graphical user interface (GUI). 

But the great virtues of M are obvious-persistent, self-orga
nizing sparse arrays for convenient, efficient data storage; the 
ability to create generalized software using indirection; an 
admittedly cryptic but nonetheless extremely powerful lan
guage syntax. These virtues have led to a rapid development 
process in an unusual but simple, easily-understood environ
ment. Surely a dynamic, flexible language like M can adapt to 
meet the challenges of Windows, just as old-fashioned lan
guages like C, BASIC and Pascal have shown a remarkable 
ability to transform themselves. 

In the past few years, Windows has become increasingly object
oriented, and in the future will be even more so. This critical 
fact points the way to a clear path for the continued evolution 
of M. In object-oriented (00) systems, objects assume a sim
ilar "arms-length" relationship with each other. They commu
nicate by sending messages in a clearly-defined, consistent way. 
A number of fundamental changes are needed to make M 
object-oriented, and an ANSI subgroup has made a great deal 
of progress on a solid 00 standard for M. 

In addition to its virtues, M has always had some drawbacks. 
Lacking a formal model of application development, and 
imposing few restrictions or requirements upon the developer, 
it has always been too easy to create un-maintainable code in 
M. Of course, no new paradigm can force programmers to 

16 M COMPUTING 

write better code, but this article will argue that the 
ModelNiew/Controller paradigm, when combined with the 
00 model, will definitely make it much more likely. 

What is the MVC Paradigm? 

Without getting too technical, the ModelNiew/Controller 
(MVC) paradigm is a way of constructing software that sepa
rates an application's capabilities into three separate, indepen
dent levels. 

Controller 
Level 

The model level, at the bottom of the above figure, is for repre
senting data. In traditional M terms, this refers to global data
bases, such as patient and physician files. In M, any piece of 
data, in any global, may be created, modified, or removed by 
any M routine. The consequences of this are well-known: if a 
program bug causes invalid data in a patient record, it may take 
a very long time to correctly isolate the problem. 

In an 00 system, by contrast, patient objects communicate 
with physician objects ( and others) by sending messages, and 
all the code to modify a patient object's internal data must 
reside within the patient object itself. Thus, if a program bug 
causes invalid data in a patient object, then the patient object 
itself is ultimately responsible for preventing this. 

If the model level represents the back end, then the controller 
level is the front end, consisting of interactions with the user. 
In traditional M terms, this refers to the code directly con
cerned with input/output operations. In an 00 system, it con
sists of objects on the screen displaying and collecting data, and 
allowing the user to trigger certain events within the applica
tion (e.g. by clicking on a button.) 

December 1996 



The view level provides an interface between the model and 
controller levels. In producing a report, for example, a view
level object would drive the entire process, interacting with 
model-level objects (representing the data) and controller
level objects (displaying information on the screen). The view 
level is generally in charge: it sends messages to the model and 
controller levels, thereby driving the process. The controller 
level consists of the concrete user interface, while the view level 
is an abstract presentation that could just as easily be printed 
on paper, as a report, as it could be displayed on the screen 
using controls. 

The MVC paradigm suggests that these three levels must be 
kept separate. Model-level objects are responsible for repre
senting the back end, controller-level objects are responsible 
for the front end, and view-level objects are responsible for 
overall control of the process, integrating the two other levels. 
If a model-level object attempts to send messages to objects at 
other levels, then the MVC paradigm has been violated. It is 
technically permissible for the controller level to communicate 
directly with the model level, but to do so is considered bad 
form. 

In traditional M systems, it is possible for any routine to modi
fy any global node, and to perform I/O operations. That's why 
legacy M code consistently violates the MVC paradigm! It's pos
sible not to, in M, but doing so requires tremendous discipline. 
The temptation to mix the three levels together within a single 
routine can be very hard to resist. (Note to M programmers: a 
single FOR loop, using $ORDER to traverse the database and 
containing WRITE commands, actually spans all three levels: 
FOR= view, WRITE= controller, and $ORDER= model.) 

Two Migration Paths 

There are two Windows migration paths one can choose, as 
illustrated in the following diagrams. 

Current 
Situation 

Migration 
Strategy 

Results: 

♦ Still procedural. 

♦ No benefits of 
inheritance, 
encapsulation, 
interchangeability. 

demand for new 
features. 

By migrating to a procedural GUI front end, developers con
tinue to blur the line between the three levels of an application. 
The result, of course, does not benefit from the strengths of 
object-oriented M. Even so, there is an increased user demand 
for new features. As more such features are added, user 
demands tend to increase (not decrease), and the procedural 
code is subjected to increasing stress. 

December 1996 

Current Migration Strategy Results: 

♦ Object Oriented 

♦ Encapsulation 

♦ Inheritance, 
Reusability. 

♦ Faster, Easier 
Development. 

♦ Compatibility with 
Emerging Standards. 

When the migration strategy combines object orientation with 
the strict division into model, view and controller levels, the 
benefits are many. Encapsulation makes it easy to know which 
code is responsible for which results. Inheritance makes the 
code much more reusable. This means that future develop
ment, to meet increased user demands, will be faster and easi
er. And, since future standards will also be object-oriented, it 
will be much easier to maintain compatibility with them. 

Encapsulation and Interchangeability 

In object-oriented M (OOM) systems, a principle called encap
sulation forbids one object from directly "looking inside" 
another. Think of each object -as a little capsule: you can't 
reach inside without breaking it. Instead, objects must 
exchange information by sending messages. This gives each 
object a ckarly-defined rok, and makes the three-level MVC 
paradigm easy to enforce. 

One advantage of the MVC paradigm is that it makes interop
erability easier. The model level might include your M global 
database and some of the existing routines; the controller level 
might be a front-end written in Delphi, or a native OOM front 
end; and the view level might be an OOM system functioning 
as an interface between the two. 

Another advantage is interchangeability. Theoretically, it 
should be possible to replace all of the controller-level objects 
with new ones, thereby implementing a different user interface. 
As long as the new controller level supports the same messag
ing protocols, the model and view levels should not require sig
nificant changes. (But generally there are changes to the mes
saging interface. Even then, only the view level will have to 
change in order to support it: the model level should not be 
affected unless the system's overall data modeling needs have 
changed.) 

In traditional M systems, this interchangeability is not readily 
apparent, because the controller, view, and model levels have 
all been mixed together. Thus it often seems easier to rewrite 
an entire M program than to isolate and modify all of the con
troller-level commands. Imagine taking a terminal-based M 
application and trying to incrementally modify it to use a GUI 
interface instead. Would such an incremental migration path 
even be possible? 

M COMPUTING 17 



Or imagine hard-wiring a prototype interface between your M 
database and a Visual Basic front end. If you decide to redo 
the front end in Delphi, what percentage of your M code to 
support the VB front end would be able to work, interchange
ably, together with Delphi? 

The GUI migration path often envisioned by organizations 
needing to make this transition does not involve OOM. This 
results in a continued blurring of MVC lines. Thus, inter
cliangeability is never achieved. At considerable expense, a new 
GUI front end is developed that represents a hard-wired set of 
interactions between M and, for example, Delphi or Visual 
Basic. Thus, each new feature can require coding changes to 
both the front and back ends. A complete overhaul of the front 
end (which is almost inevitable) may result in scrapping the 
whole thing and starting over. Worse yet, the prospect of los
ing so much work may prevent the needed overhaul, resulting 
in an application that does not meet the needs of users and is 
also difficult for programmers to work with. 

The procedural solution is a "one-trick pony." The work 
involved is generally not reusable. Finding bugs, making 
changes quickly and easily, and customizing code becomes 
problematic. And, because there is no encapsulation and no 
inheritance, each change produces a ripple effect, resulting in 
chronic support problems. If I don't do it right the first time, 
I'll have to work much harder to fix it, later on. 

Of the GUI systems that I've seen M developers touting in 
recent months, too many of them fail to meet the criteria of 
mature Windows applications. Interactions with their front 
ends tends to be very limited, and they rarely capture the power 
and flexibility of M. 

The 00 Future of M 

I have been working in OOM for quite a few years, now, and it 
seems like every few months a new door opens up, making it 
easy to create some previously-unthinkable Windows applica
tion in M. Because it's object-oriented, my code is nearly 
always reusable, and old classes of objects are continually being 
recycled in new ways to meet the needs of the next project. 
And if I go back to an older project, whose component objects 
have been upgraded since I last used it, then I may be pleas
antly surprised that useful new features are already in place, or 
are now easy to add. If the procedural solution is a "one-trick 
pony," then the 00 solution is more like an "energizer bunny." 
If the procedural solution is a shallow, temporary solution, 
then the 00 solution is a deep, abiding solution. 

And, because of inheritance, I can add a new feature in many 
places at once, producing a sudden renaissance in the capabil
ities of a number of related kinds of objects. If I don't do it 
quite right the first time, I can always fix it later, and the bene
fits will be easily reusable throughout the system. 

The difficult challenge of migrating to Windows also gives us 

18 At COMPUTING 

many exciting new opportunities. We can no longer afford to 
accept compromises we took for granted in the past, because 
the applications of the future will place tremendous new 
demands on the work we are producing today. As an OOM 
programmer, I can be confident that the work I do will remain 
useful in the future. And I want this work to survive, because 
otherwise I'll only need to re-create it later. 

The benefits of OOM are clear: it is easier to find bugs, since 
all code is self-contained within the appropriate object. It is 
easier to make changes and customize an application, since 
internal structural changes to one object do not affect other 
objects unless their communication patterns are altered. 
OOM code is often better written and more structured and 
nearly always more modular. Because of inheritance and 
reusability, each application is easier to create than the last, 
and the benefits of OOM become more apparent as an appli
cation's complexity increases. 

The M language is complete for procedural programming, but 
no longer adequate in the object-oriented world of the present 
and future. A great number of companies in the M communi
ty have already begun the transition to objects, but in the 
majority of cases it is an ad hoc, partial transition. We need to 
fully embrace OOM and develop a long-term strategy to 
migrate our existing systems. This argument has started to win 
acceptance in the M community: that's why ESI has now been 
awarded a DoD contract to provide TCP/IP, DCE, and 
CORBA connectivity to our M-based EsiObjects™ program
ming system. This exciting new contract will open up M data
bases to the next generation of data interchange standards. 

\;.: 

I think that OOM represents a clear path to the future. The 
creation of.fully object-oriented M systems, including classes 
and multiple inheritance, a robust and flexible messaging syn
tax, encapsulated objects whose integrity can't be violated from 
outside-all of these are making M a better language on its 
own. Combine this with full support for the most advanced 
features of Windows, and an M application is able to send mes
sages to an object without needing to worry whether that 
object lives inside the M environment, or whether it exists at 
the Wmdows level (for those of us using OOM today). When 
the power of M is combined with this level of interoperability 
and integration with other applications and the operating sys
tem, then M becomes a very attractive development environ
ment for the 21st century. M 

Erik Zoltan is a freelance consultant who has been programming, writ
ing, and teaching in the M community for the last 6 years. He has also 
done extensive work with EsiObjects TM for ES/ Technology Corporation. 

December 1996 


