
JUST ASK

Lock

by Frederick L. Hiltz, Stage Manager

M programmers know that the
LOCK command grants exclusive
ownership of its argument-if your
lock succeeds, then no one else's
will. We usually employ LOCK to
prevent two programs from simulta­
neously updating the same global
variable, but it has more general
utility to synchronize concurrent
processes.

Many database management sys­
tems impose locking for every access
to every record. M programmers,
however, can lock only when it mat­
ters; a key to the superior perfor­
mance of a well-crafted M database.
To achieve that performance, we
must consider the consequences of
LOCK in real applications.

Scaling up

It is easy to design an application
thinking "when in doubt, lock." The
program runs well during testing,
but in production its performance is
terrible. Why? Thousands ofM pro­
grams run in today's large distrib­
uted systems, and hundreds of them
may refer to the database at the
same time. Unnecessary locking
makes them wait in line for access,
so concurrency suffers. In addition,
the network messages that coordi­
nate the locks cause delays.

Copies of one global variable may
reside in many caches throughout
the network, and programs may
change any of the copies. Which
change gets written to the disk? The
problem is similar to the case of sev­
eral programs on one computer

48 M COMPUTING

changing a global variable, solved by
locking. LOCK creates network
traffic increasing with the size of the
global being locked (remember that
the scope of lock is not only its argu­
ment but also all ancestors and
descendants of its argument):

· Messages to all computers cause
them to invalidate the caches that
contain their copies of the global
data.

· The next access to any of those
copies causes a fresh copy to be
transferred from the one process
that now owns the lock.

This "cache flush" does not prevent
other programs from changing the
variable that is locked-successful
locking still requires the cooperative
use of LOCK by all programs. The
cache flush does assure that the
value written to disk is the one set by
the program that owns the lock,
rather than values left in caches
before the lock was granted.
Beaman and Althouse give more
detail in their description of
Distributed Cache Protocol [1].
Note that the M standard requires
only exclusive access to the LOCK
argument; it is silent on the cache
behavior of the same-named global
variable. We shall see how to take
advantage of the distinction.

The watchword, then, is to lock as
little as possible as seldom as possi­
ble:

· Consider a LOCK when writing
but not when reading, permitting
one writer but many readers of a

datum. The value read by a single
global reference may not l:>e the lat­
est, but it will be consistent, which is
satisfactory for many applications.
Consistency across several global
references, however, requires a
LOCK when reading, or preferably
transaction processing.

· Lock the lowest possible level of
the variable to maximize concurren­
cy. For example, lock the record of
one part in an inventory, not the
entire inventory global.

· When locking to synchronize tasks
that do not need mutual exclusion
on global data, reduce network traf­
fic by making the LOCK argument
different from any global name.

'\.-
. The consequence of not locking
may be acceptable. When counting
the uses of a program, who cares if
two tasks increment the counter at
the same time, thereby missing one
in a million counts?

· Ask your MDC representative to
act on an "atomic increment 77"
proposal, which allows a more effi­
cient implementation of the com­
mon "lock-increment-unlock"
sequence. MIIS programs have
used it successfully for years.

· Substitute transaction processing
[2] for the homemade equivalent
built with LOCK. Performed by the
language processor instead of the
application, TP is easier to write and
understand, potentially faster, and
definitely more reliable. It also
avoids the deadly embrace.

September/October 1996

The Deadly Embrace

Before 1990 the LOCK command
always released all locks held by the
process before requesting exclusive
ownership of the locks in its argu­
ment. Such behavior discouraged
modular programming-a subrou­
tine could not lock what it needed
without releasing all locks held by
its caller. A conscious decision by
the language designers traded this
disadvantage for guaranteed free­
dom from the deadly embrace.

The increasing importance of mod­
ular programming led to the addi­
tion in 1990 of the incremental
LOCK, by which a subroutine can
lock and unlock its resources with­
out affecting its caller's locks. The
programmer m~t then manage the
situation shown in Figure 1, where
two concurrent tasks need to lock
two or more resources. My pro­
gram and yours both succeed with
their first locks, then wait forever
on their second locks.

MINE YOURS

LOCK+"'A LOCK+"'B

LOCK +"'B LOCK +"A

LOCK - A A,- AB LOCK - A A,- AB

Fig. 1 Deadly Embrace

The general problem of deadlock
avoidance and resolution is diffi­
cult and not well-solved by practi­
cal operating systems. Several
methods, however, are available for
application programs:

· Be greedy. Lock everything you
might need at the beginning of your
program and hold it until done.
This technique yields poor concur­
rency.

· Lock items in an agreed order, for

September/October 1996

example alphabetically, which may
not be practical in a complex pro­
gram with many possible orderings
for locks.

· Use timed locks and abort your
operation if they fail, or unlock the
locks you hold and repeat the oper­
ation-homemade transaction pro­
cessing. This is often a good
approach for routines with well­
defined isolated operations, like fil­
ers.

. Use real transaction processing.

· Cop out. "It won't happen in a
thousand years, and if it does, the
operators will kill the job and restart
it." Would your manager approve?

Would your conscience? M

References

1 Peter D. Beaman and John J.
Althouse, ''An Efficient MUMPS
Distributed Database Using a High
Level LAN Interface," MUG
Quarterly, 19:3, (1989).

2 Roger Partridge and Joel Segel,
"Transaction Processing in
MUMPS," MUG Quarterly, 21:5
19-25, (1991).

Frederick L. Hiltz, Ph.D., develops
medical information system soft­
ware at Brigham and Women's
Hospital, Boston, Massachusetts.
fhiltz@bics.bwh.harvard.edu

M COMPUTING 49

