
JUST ASK 

Lock 

by Frederick L. Hiltz, Stage Manager 

M programmers know that the 
LOCK command grants exclusive 
ownership of its argument-if your 
lock succeeds, then no one else's 
will. We usually employ LOCK to 
prevent two programs from simulta­
neously updating the same global 
variable, but it has more general 
utility to synchronize concurrent 
processes. 

Many database management sys­
tems impose locking for every access 
to every record. M programmers, 
however, can lock only when it mat­
ters; a key to the superior perfor­
mance of a well-crafted M database. 
To achieve that performance, we 
must consider the consequences of 
LOCK in real applications. 

Scaling up 

It is easy to design an application 
thinking "when in doubt, lock." The 
program runs well during testing, 
but in production its performance is 
terrible. Why? Thousands ofM pro­
grams run in today's large distrib­
uted systems, and hundreds of them 
may refer to the database at the 
same time. Unnecessary locking 
makes them wait in line for access, 
so concurrency suffers. In addition, 
the network messages that coordi­
nate the locks cause delays. 

Copies of one global variable may 
reside in many caches throughout 
the network, and programs may 
change any of the copies. Which 
change gets written to the disk? The 
problem is similar to the case of sev­
eral programs on one computer 
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changing a global variable, solved by 
locking. LOCK creates network 
traffic increasing with the size of the 
global being locked ( remember that 
the scope of lock is not only its argu­
ment but also all ancestors and 
descendants of its argument): 

· Messages to all computers cause 
them to invalidate the caches that 
contain their copies of the global 
data. 

· The next access to any of those 
copies causes a fresh copy to be 
transferred from the one process 
that now owns the lock. 

This "cache flush" does not prevent 
other programs from changing the 
variable that is locked-successful 
locking still requires the cooperative 
use of LOCK by all programs. The 
cache flush does assure that the 
value written to disk is the one set by 
the program that owns the lock, 
rather than values left in caches 
before the lock was granted. 
Beaman and Althouse give more 
detail in their description of 
Distributed Cache Protocol [1]. 
Note that the M standard requires 
only exclusive access to the LOCK 
argument; it is silent on the cache 
behavior of the same-named global 
variable. We shall see how to take 
advantage of the distinction. 

The watchword, then, is to lock as 
little as possible as seldom as possi­
ble: 

· Consider a LOCK when writing 
but not when reading, permitting 
one writer but many readers of a 

datum. The value read by a single 
global reference may not l:>e the lat­
est, but it will be consistent, which is 
satisfactory for many applications. 
Consistency across several global 
references, however, requires a 
LOCK when reading, or preferably 
transaction processing. 

· Lock the lowest possible level of 
the variable to maximize concurren­
cy. For example, lock the record of 
one part in an inventory, not the 
entire inventory global. 

· When locking to synchronize tasks 
that do not need mutual exclusion 
on global data, reduce network traf­
fic by making the LOCK argument 
different from any global name. 

'\.-
. The consequence of not locking 
may be acceptable. When counting 
the uses of a program, who cares if 
two tasks increment the counter at 
the same time, thereby missing one 
in a million counts? 

· Ask your MDC representative to 
act on an "atomic increment 77" 
proposal, which allows a more effi­
cient implementation of the com­
mon "lock-increment-unlock" 
sequence. MIIS programs have 
used it successfully for years. 

· Substitute transaction processing 
[2] for the homemade equivalent 
built with LOCK. Performed by the 
language processor instead of the 
application, TP is easier to write and 
understand, potentially faster, and 
definitely more reliable. It also 
avoids the deadly embrace. 
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The Deadly Embrace 

Before 1990 the LOCK command 
always released all locks held by the 
process before requesting exclusive 
ownership of the locks in its argu­
ment. Such behavior discouraged 
modular programming-a subrou­
tine could not lock what it needed 
without releasing all locks held by 
its caller. A conscious decision by 
the language designers traded this 
disadvantage for guaranteed free­
dom from the deadly embrace. 

The increasing importance of mod­
ular programming led to the addi­
tion in 1990 of the incremental 
LOCK, by which a subroutine can 
lock and unlock its resources with­
out affecting its caller's locks. The 
programmer m~t then manage the 
situation shown in Figure 1, where 
two concurrent tasks need to lock 
two or more resources. My pro­
gram and yours both succeed with 
their first locks, then wait forever 
on their second locks. 

MINE YOURS 

LOCK+"'A LOCK+"'B 

LOCK +"'B LOCK +"A 

LOCK - A A,- AB LOCK - A A,- AB 

Fig. 1 Deadly Embrace 

The general problem of deadlock 
avoidance and resolution is diffi­
cult and not well-solved by practi­
cal operating systems. Several 
methods, however, are available for 
application programs: 

· Be greedy. Lock everything you 
might need at the beginning of your 
program and hold it until done. 
This technique yields poor concur­
rency. 

· Lock items in an agreed order, for 
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example alphabetically, which may 
not be practical in a complex pro­
gram with many possible orderings 
for locks. 

· Use timed locks and abort your 
operation if they fail, or unlock the 
locks you hold and repeat the oper­
ation-homemade transaction pro­
cessing. This is often a good 
approach for routines with well­
defined isolated operations, like fil­
ers. 

. Use real transaction processing. 

· Cop out. "It won't happen in a 
thousand years, and if it does, the 
operators will kill the job and restart 
it." Would your manager approve? 

Would your conscience? M 
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