
FEATURE ARTICLE

Rapid Prototyping: A New Philosophy for
Application Developntent
by Arthur B. Smith

Rapid prototyping (RP) is one of the buzzwords of the
nineties, there's no denying it. Like many of these buzz
words, it's not really a new concept, but one that has finally
found its time in the sun. So, what is rapid prototyping? It is
a development methodology; that is, it is a way of approach
ing the design and implementation of an application (or any
other "made" thing, for that matter). It is not a specific tool
(like a debugger, or GUI builder), it is not a specific lan
guage, it is not a technique to plug into an existing system
it is a whole new philosophy of development. Some tools will
help development in a rapid prototyping environment, and
some languages (such as M!) are well-suited to rapid proto
typing. There are definitely techniques that are helpful, but
they alone do not give you the new methodology.

Traditional "Waterfall" Development

Traditionally, application development has followed the
"waterfall" methodology shown in Figure 1. In this process,
the product moves through a number of specific stages. The
product is only in one stage at a time, and each stage must be
completed before the next is started. There are numerous
software engineering standards for this methodology, each
with its own set of stages and with carefully defined deliver
ables to be produced at each step. In normal development,
the product flows smoothly down the waterfall from Initial
Concept through each of the stages until finally reaching
Deployment.

Of course, things don't always work so smoothly. Problems
are found at each step, and these problems may cause the
project to move back to a previous stage, possibly backing up
more than one stage. This is always an unfortunate experi
ence, as the product must revise all the deliverables for each
of the previously completed stages before it can again move
forward. The farther back the project must be taken, the
more it will cost in time and effort. Thus, there is a lot of
pressure to find the problems early and avoid these expen
sive mistakes. When the mistakes are found, there is often a
lot of finger pointing, back stabbing and other invidious
aspects of office politics.

36 M COMPUTING

Fig. 1 Traditional "Waterfall" Design Methodology

Rapid Prototyping Development

Rapid prototyping, on the other hand, does not rely on this
stepwise progression from initial conoopt to released prod
uct. Rather, it is based on an evolutionary response, in which
the "problems" of the waterfall approach become triggers
for a new evolutionary cycle. This is an important aspect of
the RP philosophy: removing the negative connotation from
what is traditionally considered "failure."

Soichiro Honda, the founder of Honda Motors stated this
very well: "Many people dream of success. To me success can
only be achieved through repeated failure and introspection. In
fact, success represents the one percent of your work which
results only from the ninety-nine percent that is called failure. "

Notice that "failure" (for lack of a better term) loses that bad
quality. It is no longer a thing to be avoided, rather it is a nec
essary component for success. Some people have even
described rapid prototyping as the "Method of Fast
Failures." Tom Peters, noted business writer, states "There is
an almost i"educible number of failures associated with
launching anything new. For heaven's sake, hurry up and get
them over with. "1 This is the essence of rapid prototyping.

The rapid prototyping evolutionary cycle is shown in Figure
2. Note that there is no backward movement with the accom-

September/October 1996

panying nasty connotations that we saw in the waterfall
methodology. Rather, each cycle through the evolutionary
loop refines the product until the analysis phase determines
that the product is ready for deployment.

Fig. 2 Rapid Prototyping Methodology

This does not mean that there are no feasibility studies, spec
ifications, formal'<lesigns, alpha test regimens, etc. All the
meat and potatoes deliverables of the waterfall methodology
are present, though they may not be labeled as such. Rather,
each of these evolves along with the product. Some of these
aspects (such as the feasibility study) come into being in the
early cycles and probably change very little in the later cycles.
Others, such as testing regimens, probably don't exist at all
during the early stages and may change quite a bit during the
later cycles. Thus the net effect is similar to the waterfall
methodology.

Customer/User Centered
Development

An important aspect of rapid prototyping is not shown in
these diagrams, however. In the traditional waterfall
methodology, the deliverables of each successive stage are
sent to an ever-widening audience. Early-phase deliverables
probably go no farther than the development team. Potential
customers or users (i.e., those who will use this product or
application, be they internal or external) never see anything
until the Acceptance (Beta) Testing stage. In rapid prototyp
ing, however, the customers are (or should be) involved in
every cycle through the evolutionary loop. The Assessment
step is performed by these potential customers in every cycle
from the very start. Their assessment is then reviewed, and
changes are planned by developers, working with the cus
tomers, in the Analysis step.

This customer-centered development is critical to the
methodology. It helps to guarantee that the product match
es the customers' needs and expectations, and just as impor
tant, it helps to guarantee that the customers' needs and

September/October .1996

expectations match the product. These may sound like the
same thing, but they are very different. The waterfall
methodology tries (often unsuccessfully) to achieve the first
part, but does nothing to achieve the second.

It is clear that keeping the customers involved throughout
the development process will make the product better match
their desires. They will have the opportunity to shape the
product to meet their needs, to add their input to the
inevitable difficult and critical design decisions, and to pro
vide an early end to misdirected development. The finished
product will benefit from the continuous refocusing of the
development process to meet the customers' desires.

Less obvious perhaps, is that the customers' needs and
expectations will better match the product. Here we speak
specifically of those customers who participate in the assess
ment of the prototypes. In a small internal development pro
ject, this may be most or all of the potential users. In a large
scale marketed project, this can be only a sampling of the
potential customers. These customers, however many or few
they are, have "bought in" to the product in a way never seen
using other development techniques. These customers will
believe that this product is better than any other-thinking
anything else would, after all, reflect badly on their own
input! They will gladly share their views with other potential
customers and will gladly champion the product because
they are now part of the development team; this product is
"their baby."

The psychological advantage of this customer buy-in cannot
be overemphasized. In an internal development project (one
used in-house only), careful selection of the assessment team
can virtually guarantee a favorable response from the top
down. In an external project (one marketed to others) care
ful selection can provide a source of marketing testimonials
and a solid initial customer base with good exposure to other
potential customers. Either way, this customer participation
and buy-in is an invaluable asset.

Two other aspects of rapid prototyping which are advantages
over traditional development are the more rapid production
of visible results and an increased ability to have the project
come in on schedule. Because the whole idea of rapid proto
typing is to continually refine prototypes, it follows that these
prototypes will appear earlier in the development sequence.
In fact, they do appear quicker, because the product specifi
cations and design need not be completed first-they are,
after all, refined by the assessment and analysis of the proto
types. This can ease pressures from management on devel
opers , as progress can be easily demonstrated even at early
stages.

Because the customers are participating in the entire design
and construction of the project, time can often be saved by
immediately halting work on misunderstood specifications

M COMPUTING 37

and avoiding costly rework. Furthermore, by having manage
ment participate in the evolution of the project, it becomes
much easier to bring the project in on schedule. When the
inevitable additional specifications or unforeseen delays
creep in, management can take action knowledgeably, either
by extending the timeline or by cutting requirements. Since
they are participating in the development, they have person
ally invested in the project and will help to insure its appro
priate timeliness.

The Down Side of Rapid Prototyping

Like everything, rapid prototyping has its failings as well.
Because the design and implementation of the project is
spread over a longer time period and is done before full
specifications are available, it becomes harder to recognize
modules which can be pulled out and used repeatedly.
Developers must be especially careful to watch for opportu
nities to reuse work and properly modularize their programs.

The ad hoc nature of rapid prototyping also tends to lead to
more "kludgy" programming. There is a temptation to write
sloppy programs because "it's just a prototype."
Unfortunately, there is no good way to predict what proto
types will be thrown away or thoroughly reworked and what
prototypes will remain intact in the final product. It is impor
tant to keep excellent internal documentation at every stage,
and it is essential that external documentation, specifica
tions, and design notes be maintained in an organized fash
ion to counteract the inherent disorganization rapid proto
typing brings.

Another possible down side is the inability to accurately pre
dict development time. Since it is impossible to know the
number of times through the prototype cycle that will be
required and the amount of rework required each time, it is
likewise impossible to predict the development time. Of
course, most developers have found that time predictions
based on the traditional waterfall approach do little better,
and as we have already explained, rapid prototyping tends to
bring projects in closer to schedule. It is difficult to assess
just how much this difficulty is a real detriment to rapid pro
totyping.

One last drawback is rapid prototyping's inability to do for
mal verification. In software engineering, verification is the
step following implementation which confirms that the pro
ject, as implemented, matches the project as specified. In
rapid prototyping, the specification evolves through each
cycle of the development (some may note that this is true in
any methodology, but is deliberate in rapid prototyping and
backsliding in the waterfall method). Thus, verification is just
a check that you properly maintained the specification as
well as the product. Since the end result of this evolving pro
ject, however, is increased customer satisfaction, it is
arguable whether or not this inability to perform formal ver-

38 M COMPUTING

ification is a detriment to rapid prototyping.

Requirements for Rapid Prototyping

Rapid prototyping is not a simple variation on traditional pro
gram development. It represents a true paradigm shift, and as
such, brings with it some new requirements for the developers.
One of the most important requirements has been described by
some as "egoless programming." If one listens objectively during
the assessment phase, occasionally the customer will be heard to
say, "This is junk!" Don't take it personally, it happens to every
one.

But more importantly, don't try to defend it-don't try to
convince the customer that you know what he wants better
than he does (even if you think you do). The goal is to pro
duce what the customer desires. If he thinks your prototype
is junk, then it is junk. Throw it out, lqck stock and barrel,
and start over. Don't let your ego get in your way.

Akin to this, and just as important, is the ability to really lis
ten to your customers. It is essential that the developers be
able to have a productive interaction with the customers dur
ing the assessment phase. Training in communications skills
and "active listening" is very helpful here. Some customers
will know exactly what they want and will have no problem
directing the developers appropriately. Other customers are
unsure of themselves, or naturally shy, or have difficulties
communicating. The developers must be able to draw an
honest and useful assessment out of these customers without
unduly influencing them or hearing only what they want to
hear. Developers who chose programajng so they wouldn't
have to interact with people (and we all know some of these)
have some unlearning to do before they can be effective in
the rapid prototyping methodology.

A third requirement for developers is the need for good dis
cipline. Rapid prototyping can quickly degenerate into an ad
hoc free-for-all. It is essential that there be good shop-stan
dards to reduce the tendency to produce "kludgy" code; to
force the programmers to throw bad code out and start over
rather than applying patches on patches; to keep the docu
mentation (including specifications, design notes, internal
and external documentation) up-to-date; and to thoroughly
document the assessment and analysis steps to avoid tread
ing the same ground over and over. Unlike the waterfall
method, the discipline is not built in to the system in rapid
prototyping. It falls on the developers, then, to maintain an
appropriate level of discipline.

A final requirement is good prototyping tools. It must be
possible to develop front-end (user interface) code with little
or no "guts" behind it in the initial stages. Subsequent cycles
must be able to add the application code and underlying
database without requiring rework of the front end.
Additionally, it must be easy to discard or change sections of

September/October 1996

the application without affecting the rest of the application.

The M Connection

There are a number of aspects of M that make it particular
ly well-suited to a rapid prototyping development system.
One of the main features is that it is an interpreted language
rather than a compiled language. This allows sections of the
system to be changed and tested immediately, without
recompiling (or even re-linking) the entire system. In addi
tion, there is no need to create module "stubs" as there often
is in compiled languages. It is not an error in an M program
to have references to routines that do not yet exist, as long as
you don't execute those references.

In addition, M allows data structures to evolve along with the
application. If it becomes necessary to add nodes to a data
element in M, one simply does so. In strongly typed lan
guages this will typically require a recompilation if the data
structure changes size, unless it is completely handled by
pointers (and sometimes even then). This ability to simulta
neously grow the code and data aspects of the routine make
M particularly w~l-suited to rapid prototyping using object
oriented design principles.

As a last point in M's favor, it is well-known for allowing
rapid development of code. The reasons for this are complex
and debatable, but the results are consistent-M allows
rapid code development, which is necessary for rapid proto
typing.

As with all things, M's very strengths can also be weaknesses.
The ability to "grow" a routine or a data structure can often
lead to applications that are unmaintainable. It is particular
ly important in a relatively unstructured language like M to
carefully review tlle application (code and data) at each iter
ation, and make sure it is soundly designed, well-document
ed, and maintainable. It may often be necessary to throw an
iteration out, not because the users found it unacceptable,
but because the application has become unmaintainable. In
this case, the next iteration should attempt to exactly repro
duce the previous iteration (except for aspects that were
deemed undesirable) but with a sound maintainable design.

Conclusion

Rapid prototyping represents a radical shift in development
methodologies. A main feature that characterizes rapid pro
totyping is a recognition that "failures" are bound to happen
and that they provide information crucial to development.
These so-called failures are actually positive events and
should be encouraged so long as the end result is an
improvement in the design and implementation of the pro
ject.

Another characteristic of rapid prototyping is customer/user

September/October 1996

involvement throughout the development of the application.
The only definition of quality that counts is the customers',
and the only way to learn that definition is to allow the cus
tomer to evaluate and assess your work and to listen and act
responsively and responsibly. If your oh-so-clever applica
tion does not match the customer's oh-so-perverse definition
of quality, it is a failure. The sooner you learn this failing, the
better you are able to adapt to it and produce an application
which truly satisfies the customer.

Everything else about rapid prototyping derives from these
two points. The techniques, the necessary skills, the advan
tages, and the disadvantages all stem from a desire to bene
fit from failures often and early and to involve the customer
in the entire development process. As Tom Peters (again
from "Thriving on Chaos") states: "Complexity + Need for
speed= Make more mistakes (or else!)" Join the rapid pro
totyping revolution. Get out there and fail!! M

Reference
1 T. Peters, "Thriving on Chaos", Harper and Row, 1987.

Art Smith is active with the MDC, works at the Veterinary
Medical Teaching Hospital of the University of Missouri, and
offers consulting services through Emergent Technologies.
He may be contacted at (573) 642-8802, or
Emergent@gnn.com.

MTA Europe Annual Conference

The MTA-Europe annual conference is provi
sionally scheduled for Friday, the 13th of
December, 1996 in Calais, France.

Anyone interested in contributing to the confer
ence program is invited to register their interest,
with brief details, by email to:
mtae@georgejames.com.

Further details concerning the conference program
can be viewed at:
http://www.georgejames.com/marina/mtae.

M COMPUTING 39

