
LEARNINGM

The Secret of Learning M
Gaining a Major Edge in Job Effectiveness

by Erik Zoltan

The Challenge

Today it seems everyone is looking for M programmers, and
many non-programmers frequently need to read M source
code. There aren't enough experienced people to go around,
so many organizations are investing more heavily in M train­
ing. Not all of the people being trained have programmed
before. But instruction is critical: highly-trained profession­
als are highly productive, gaining a major edge in job effec­
tiveness. I have been teaching the M language for six years,
and there's no great mystery to developing (or evaluating)
effective instruction techniques.

M has always had a reputation for being easy to learn. This is
generally true-it has a relatively small number of highly­
flexible language elements, so there's much less to memorize
than in C, for example. Some concepts, such as the rigid lan­
guage syntax and the ultra-flexible sparse array data struc­
ture, are admittedly counter-intuitive to programmers com­
ing to M from other languages. However, the only truly dif­
ficult aspect of the M language is indirection, one of its most
powerful and advanced features.

But if you think that teaching M is easy, then think again.
Many of the people learning M today have little program­
ming experience: they have to learn M and programming in
one week! My best teaching methods have been developed
after my usual approach failed to get the job done for a spe­
cific topic on a certain day. That's the most generative class­
room moment, when surprising new innovations become
possible.

The Grandmother Principle

Teaching anything is a tricky business: when you thoroughly
understand something, it becomes more difficult to talk to
those with difficulty comprehending it. What seems simple to
the teacher is often unclear to some students. Many people
who are not professional instructors underestimate the diffi­
culties involved.

I like to use the "Grandmother Principle." Ifl can't imagine my
grandmother understanding a concept, then I haven't made it
simple enough.

26 M COMPUTING

Here are three examples of what I'm talking about. As you
read the following sections, try to evaluate them according to
the Grandmother Principle. If you can suggest any improve­
ments, I'd love to hear about them!

How to Teach M Syntax

Question: What's the real difference between the following
two lines of M code? (Notice that the second line has two
spaces between the I and the X.)

I X W X K X Q

I X W X K X Q

Answer: Although the two lines look nearly identical to the
novice, an experienced M guru may not even notice the sim­
ilarity, at first. In reality, the two lines have very little in com­
mon, as the following re-statements make clear.

if X write X kill X quit
if xecute W xecute K xecute Q

As you may know, M is extremely touchy about the number
of spaces; one extra space can change everything that comes
after. (Exactly one space separates a command from its
argument. If there are two spaces, the next thing is another
command.) After years of teaching M Programming, I can
assure you that for many people this concept takes a lot of get­
ting used to.

Teaching Solution: Famous Harvard psychologist Jerome
Bruner has always said that any concept can be taught to any
audience (even small children) in some intellectually honest
way, as long as one can find the right way in which to present
it.

This oversimplified diagram (see figure 1)makes it easy to tell
the difference between commands and arguments in the pre­
ceding examples. One space separates the command from
its argument, while two spaces separate one command from
the next. Using this picture, it's easy to understand the syn­
tax of simple, one-argument examples that don't contain
labels, blocks, post-conditionals, or comments. (Those are
separate concepts.)

September/October 1996

begin

Fig. 1

This diagram, which represents one simple topic, adheres to
the Grandmother Principle. It is my belief that no more than
200 such topics must be mastered in order to become an
advanced M programming professional. (Most program­
mers know those 200 ideas intuitively, without utilizing such
concrete diagrams.) But expertise has always been mysteri­
ous: no one has managed to identify all of these underlying
concepts, althou~h in six years of teaching M I have probably
isolated about half of them.

How to Teach Tree-Walking

Tree-walking (formally known as sparse array traversal) is
another stumbling block for many M students. The $ORDER
and $QUERY functions are a constant source of confusion for
some programmers. I suspect this is partly because M's bril­
liant sparse array data structure is so unusual, requiring
many of us to "unlearn" array concepts gleaned from other
languages.

The following SET commands create a simple local array:

>S ARR(0)=27,ARR(3,5)="hello"
>S ARR(3, 6) =-1,ARR("B", 7) ='"'
>S ARR("B")="trumpet"

In order to understand tree-walking, there are two important
ways to visualize this array. The first is a list showing the
nodes that contain data and their associated values. In most
M systems, such lists are produced by the ZWRITE (or argu­
mentless WRITE) command for locals and by the %G (or %g)

routine for globals.

>ZWRITE
ARR (0)
ARR(3,5)
ARR (3, 6)
ARR ("B")
ARR ("B" , 7)

Fig. 2

September/October 1996

= 27
= hello

-1
trumpet

This way of visualizing the array is helpful in understanding
the $QUERY function, which simply returns the next entry in
the list after the one you specify as its argument. Here are
two simple examples, using the array node listing as a refer­
ence:

>W $Q(ARR(0))
ARR(3,5)

>W $Q(ARR(3,6))
ARR ("B")

1 ARR (0)
4ARR (3, 5)

1 ARR (3, 6)
4ARR ("B")

ARR("B",7)

Fig. 3

Of course there's much more to it: $QUERY generally
requires the use of indirection, which is by far the most diffi­
cult M language concept to master (all M books except the
ANSI Standard contain some false information about indi­
rection.)

It is even more useful to visualize M arrays as tree structures.
In the following picture of the same local array, filled circles
are array nodes containing values, while open circles are
undefined "virtual" nodes. This kind of diagram makes
$DATA and $ORDER much easier to understand.

0

Fig. 4

Note that the number of filled-in circles is the same as the
number of lines in the earlier ZWRITE listing. Using this
tree, it's easy to define the $ORDER function as "jumping to
the right."

$ORDER will return the next subscript to the right, under the
same immediate parent, or "" if there is none.

1 >W $O(ARR(0))
3 0

2 >W $O(ARR(3, 1111))

5

Fig. 5

M COMPUTING 27

Figure 5 shows two $ORDER examples, using the tree dia­
gram as a reference.

As with $QUERY, there's still a lot more to it. For example,
you still have to be able to create FOR loops that use
$ORDER correctly in real-world global data structures. But
once you know the underlying concepts, even the most
sophisticated treewalking becomes understandable.

Given that these array concepts would not be introduced
without some prior supporting topics, I believe that they also
adhere to the Grandmother Principle.

How to Teach Null Strings

A number of functions and operators are very simple in
design, except for special behaviors related to the null string.
The null string is defined as an empty string of length 0: it
contains no characters. The following language elements are
complicated somewhat by the null string:

$ASCII function;
$EXTRACT function;
READ command;
[(contains) operator;
] (follows) operator.

Actually, these null string behaviors are remarkably consis­
tent in M. A common thread runs through them. The fol­
lowing diagram of the string "Objects" makes these behav­
iors predictable:

Characters
1111 '"' 11011 llb11 llj11 11e11 llc11 llt" 11s11 1111 1111

-1 0 1 2 3 4 5 6 8 9 10

-1 I -1 1,919s I 106I 1011 991116111sl -1 I -1
ASCII Codes

Fig. 6

At the outset, it is important to explain to students that this dia­
gram is a behavioral model: M will act as if strings looked this
way, even though the system internals are different. M can't real­
"/y store strings this way, because then each string would be infi­
nitely long in both directions, and illegal byte values of -1 would
have to be stored in most of the locations.

The diagram has two parts; one shows the characters stored in
each position of the string, the other ASCII code numbers.
Character-oriented language elements (e.g. $EXTRACT and[)
use the top part of the diagram, while ASCII code-oriented Ian-

28 M COMPUTING

, $A("Objects" ,6) equals 116;
, $A("Objects" ,0) or $A("Objects" ,10) both equal -1;
, $E("Objects" ,4) equals "en;
, $E("Objects" ,-1) or $E("Objects" ,9) both equal 1111

;

, R x: 2 sets X to 1111 if no string can be read within 2 seconds;
, R *X : 0 sets X to -1 if no character can be read immediately;
, "Objects" ["bjec" and "Objects" ["b" are both true, but 11 Objects 11 ["B" is

false;
, "Objects"['"' is true;
, in fact, Y [X is always true if X=" ";
, X] 1111 is always true unless X equals "";
, "ABC"]"AB11 istruebecausethethirdcharacterof 11 AB 11 hasanASCI!codeof -1.

Fig. 7

guage elements (e.g. $ASCII and]) use the bottom part.
Here are some of the behaviors explained by this way of
thinking about strings:

This is a general concept that applies under a variety of cir­
cumstances. The string diagram is presented early in the stu­
dent's M learning experience; several different strings are
then diagrammed by the student. The instructor then refers
to the diagram whenever a null string behavior requires an
explanation. Thus, the Grandmother Principle is not violat­
ed.

Summary
\..

Each teaching model discussed above has been effective in
practice and was developed after years of using a more com­
plicated approach. There are many different kinds of good
teachers and teaching methods-every teacher has unique
gifts, and imposing any "best" method is only stifling in the
long run. The following principles represent the most diffi­
cult philosophy of teaching that I can envision and the most
effective I have found to date.

1. Slower is Faster

The first topics you cover should pave the way for those to
come. The more time you spend on these initial concepts,
and the more thoroughly they are covered, the easier the
more advanced ideas will be to grasp, and the more the stu­
dents will learn. Be patient, and sell the students on being
patient themselves.

2. It's Not the Student's Fault

If a student has difficulty grasping a concept, it is not because
they are to blame; it's because your teaching method needs
to be refined or overhauled. The students with the most to

September/October 1996

teach you are those who have trouble learning from you.
Approach each student on their own terms, as though your
personal mission in life were to make them understand.
They will learn more and will greatly appreciate your level of
commitment.

3. This is Not the Way

No matter how cleverly you present the concepts you are
covering, know that it is not the best way to do it. Some day,
if you keep this in mind, you will stumble onto a better way
and you'll exclaim, ''Aha! Why didn't I think of that before?"

4. Repetition is Key

Once you have an elegantly simple, impossible-to-misunder­
stand way of thinking about a concept, drive it home with a
series of equally simple examples, illustrating every impor­
tant nuance in detail. (Space limitations have prevented me
from doing so in this article.) Don't assume the students
understand, make sure they do. As with foreign languages,
each concept mus\ be over/earned in order to become sec­
ond-nature to the student. Use unusual, occasionally
humorous examples to keep it interesting throughout.

5. Insist on Active Students

Classroom discussion should be a dialogue, not a lecture.
Encourage participation, and praise students for answering
correctly or asking incisive questions. Create an atmosphere
of emotional warmth, and never invalidate a student. Stress
that "there's no such thing as a stupid question," and sys­
tematically brainwash yourself into truly believing that state­
ment. Give frequent hands-on exercises, so the students can
apply each important concept while they are learning it.
Stress those concepts they will apply in practice; interesting
nuances or theoretical concepts can be picked up later.

6. Be Self-Secure

Think on your feet. Work "without a wire," shunning
detailed notes and improvising spontaneous examples when­
ever possible to keep things fresh. Base your approach on
the specific needs of each class. Use humor whenever you
make mistakes. You're not expected to be perfect.

Don't feel threatened by your students. The best way to
achieve this is to know your topic thoroughly. Read M rou­
tines like newspaper pages. And read one page from the
ANSI Standard every day: it's not as hard as it looks at first,
and it contains much knowledge not available elsewhere.
(But DON'T make your students read it!)

September/October 1996

7. Never Stop Raising the Bar

Even a teaching approach that gets the job done and receives
extremely high marks from students is never "good enough."
Students are good at knowing what doesn't work for them,
but they aren't experts in the field. Sometimes a great
teacher can get high marks for an ineffective approach, but
working harder ultimately pays big dividends for teacher and
student alike. And besides, teaching the same topics over
and over can only be kept interesting by trying new things
and setting new challenges. M

Erik Zoltan has been teaching M programming courses for
over 6 years at ESI Technology Corp., 5 Commonwealth
Road, Natick, MA.

Kaiser Permanente Mid-Atlantic States Region, part of
the nation's largest, prepaid health care system, is seek­
ing M[UMPS] professionals to join its expanding I.T.S.
department in Silver Spring, MD. Several exciting appli­
cation programming positions are currently available:

M[UMPS] PROGRAMMERS
with 2-3 years' experience

Our M[UMPS] programmers enjoy current technology,
competitive pay, modern facilities and easy commuting
access from the 1-95 Calverton Exit. Join our growing
team of dedicated and highly skilled information tech­
nology professionals!

We offer an excellent compensation package that in­
cludes retirement, health, dental and life insurance. For
.immediate consideration, please fax your resume to:
(301) 816-7425 or mail to:

Kaiser Permanente
Box 6500

Rockville, MD 20849

24 hour JOBLINE 1-800-326-4005.
Visit our website! http://www.kaiseronline.org

EEO/AA

M COMPUTING 29

