
FOCUS ON FILEMAN

Programming Hooks 104: Introduction to the
Input 1ransform

by Rick Marshall

Introduction

This is the first in a series of
articles that examines program­
ming hooks available in VA
FileMan. Most standard data­
base activities within FileMan
contain programming hooks,
points at which a programmer
can insert M code to change the
outcome. Knowing their proper
use distinguishes the FileMan
expert from the novice.

Ironically, the best known and
most frequently used program­
ming hook, the input transform,
is also one of the hardest to
master. The name suggests a
single function for a program­
ming hook that has been over­
loaded to accommodate at least
ten distinct, related capabilities
including:

1. Validation of the syntax of a
data type.

2. Screening out of certain syn­
tactically valid choices.

3. Validation of relationship to
other field values.

· 4. Pointer lookup control.
5. Transformation from external

syntax to internal syntax.
6. Information about the length

of the field.
7. Record numbering (01 field

only).
8. Warnings to the user.
9. Side effects--M code entered

40 M COMPUTING·

by the developer, code unre­
lated to input transform per
se, but that the developer
wants to execute at this point
in processing.

10. Definition of computed field.

Changing the Input
Transform

The basic features of the input
transform are constant across its
functions. FileMan stores each
field's input transform in -" -
pieces 5 and up in the 0-node of
the field definition in the ,,..,_ DD
global. FileMan automatically
creates and adjusts each field's
input transform as you define the
data type and other characteris­
tics of the field. However,
FileMan lets you use and manip­
ulate the input transform your­
self as well, using the Input
Transform (Syntax) option on
the Utility Functions menu.

If you change the input trans­
form, FileMan disavows all
knowledge of the field's data
type and will no longer let you
modify the data type with the
standard Modify File Attributes
option. As documented in the
Programmer Manual, this is con­
trolled by an X flag that FileMan
puts in -" -piece 2 of the field
definition 0-node. This flag is

essential. Without it, FileMan
would incorrectly treat your
handcrafted field definition as
the base data type you originally
assigned it. Therefore, you
should not tamper with it casual-
ly. ••.

However, if during your initial
development of the field you
change the input transform, but
then later change your mind and
return the input transform to its
original definition, you should
remove the X flag manually. In
return, FileMan will once again
let you use Modify File
Attributes to manipulate the
field definition. \c..'

General Usage Issues

The input transform's interface
is simple. FileMan sends in X as
a potential field value, and the
input transform sends out X in
one of two ways: undefined, to
signify the input value was bad,
or defined. For most data types,
FileMan sends in X in external
format (such as "JUL 7, 1996"),
but for variable pointers X will
come in internal format (such as
"42;DIC(19,"). In either case, if
the input transform accepts X it
should send it back out to
File Man in internal format (such
as 2970708, for our date exam­
ple, or unchanged for the vari­
able pointer). While there are a

July/August 1996

few commonly used undocu­
mented input and output vari­
ables, X is the only documented,
reliable one. The others, which
we will discuss in future columns,
have side effects or are difficult
to use.

That's it. Unlike similar pro­
gramming hooks, the input
transform can not rely upon the
naked indicator being set to any
particular location beforehand
and is not expected to adjust
$TEST.

Unlike output transforms, input
transforms do not need to worry
about preserving the flow of con­
trol through tb.f hook. This is a
common misunderstanding
based on how closely the two
hooks are related. You are free
to use the IF, ELSE, FOR, NEW,
and other commands that alter
the flow of control. In fact, con­
sider yourselves particularly
encouraged to use the NEW
command to clean up any tem­
porary variables you create with­
in the input transform; this will
improve your programming
hook's reentrancy if it is called in
recursive situations, even aside
from the housekeeping advan­
tages for your symbol table.

Aside from these guidelines, the
usual rules for programming
hooks apply. Think carefully
before introducing any I/O into
your input transform. Where
possible, move it into your user
interface instead. When you
must give the user output, use
the EN,,..._ DDIOL utility to
ensure it will work not just with a
scrolling-mode user interface,
but with screen-oriented or GUI
interfaces as well. The details to
using the input transform

July/August 1996

beyond these kinds of general
guidelines are specific to the
problems you are trying to solve.

Data Type Syntax

The input transform's original
function was to validate the syn­
tax of a field's data type. When
you assign a data type to a field,
FileMan builds an input trans­
form to validate its syntax.
FileMan's base data types each
use the input transform in a
slightly different way:

1. DATE/TIME: builds a call to
the %DT data validation tool.

2. NUMERIC: builds a postcon­
ditional KILL command that
ensures that the value is numer­
ic, falls within the right range,
and has the right number of frac­
tional digits.

3. SET OF CODES: doesn't use
the input transform; just inserts a
QUIT command. Instead, the set
of codes is defined in ,,..._ -piece 3
of the field definition's 0-node.

4. FREE TEXT: builds a post­
conditional KILL command that
enforces the length of the value
and may include an optional pat­
tern match (see below).

5. WORD-PROCESSING: the
stub field definition has no input
transform, the .01 of the word
processing subfile has only a
QUIT command.

6. COMPUTED: contains the M
code to implement the computed
expression. We'll cover input
transforms on computed fields in
detail in a future article.

7. POINTER TO A FILE: builds
a call to the DIC record selection
tool that includes an optional
screen on the choices. This too,
is fodder for a future article.

8. VARIABLE POINTER:
doesn't use the input transform,
just inserts a QUIT command.

9. M: builds a call to the DIM
code validation tool.

For your purposes though, the
great value of the input trans­
form is in creating new data
types out of existing ones. For
now, new data types must be
redefined for each new field you
want to use them with, but in the .
near future you will be able to
reuse your definitions. The input
transform lets you define the
syntax of a new data type by
accepting only correctly format­
ted strings. You should probably
follow up this syntactic definition
by adjusting the field's descrip­
tion and help, and adding func­
tions to the Function file.

When planning a new data type
for your field, be sure to start
from the base data type most
similar to it. Changing the input
transform will be enough to alert
FileMan to be careful about
assuming how your field
behaves, but it will still expect it
to follow the general rules of col­
lation length, etc. For example, if
a social security number data
type is stored without its hyphens
(e.g., 123456789), it can be based
on the numeric data type, but
with them intact (e.g, "123-45-
6789") it had better be based on
free text. Think about the impact
of those hyphens on its collation
sequence, let alone arithmetic
operations.

M COMPUTING 41

When in doubt, base data types
on free text, always a safe bet.
FileMan makes few assump­
tions about the behavior of free
text, which has the added
advantage of giving you access
to pattern match capabilities
without the need to modify the
input transform directly.

All of this assumes your new
data type is based solely on
standalone syntactic considera­
tions. Definitions based on rela­
tionships with other parts of the
database or other forms of deci­
sion making are more involved
and will be covered later. M

(Next issue, Intermediate Input
Transforms)

MTA NOTEBOOK
MTA Annual Conference
Setfor ✓97

The 1997 MTA Annual
Conference will be held in
Boston at the Hynes Convention
Center the week of May 18th.
MTA will once again join forces
with Database & Client/Server
World.

Conference Program
Committee Volunteers
Needed
MTA is looking for volunteers to
participate in the planning of the
1997 annual conference. Anyone
interested should contact MTA
at 301-431-4070 or send e-mail
to:

MTA1994@aol.com

42 M COMPUTING

Forward your FileMan questions or
topics you would like to see
addressed in this column to the
mail group FMTEAM on the VA's
FORUM System, or write to:
VAISC6 San Francisco, Suite 600,
301 Howard Street, San Francisco,
CA 94105.

Rick Marshall works at the Seattle
Development Satellite office of
VA's San Francisco IRM Field
Office. He is a member of the
FileMan development team, the
MTA Board of Directors, and is
currently writing the 1995 Standard
M Programmers' Reference
Manual and editing the next draft
M Language Standard.

M Technology Association
1738 Elton Rd.

Suite 205
Silver Spring, MD 20903

Netscape: A New Avenue
forM?

Netscape Navigator™ beta ver­
sion 2.02 has a new scripting lan­
guage called "LiveScript." It is
used to control the way the
browser displays pages on web­
sites.

Rumor has it that M is far better
suited to this purpose. Is there
anyone out there who would care
to comment? For more informa­
tion on LiveScript, see:
http://www.netscape.com

July/August 1996

