
JUST ASK!

Recursion

by Frederick L. Hiltz, Stage Manager

Recursion: a routine calls itself,
directly or through intermedi-
ate routines. The method has
acquired a thoroughly unde­
served mystique. Let us de-mys-
tify it because recursion belongs
in every programmer's tool kit.
Either recursion or iteration
can solve many problems.
Choose the method to match
the structure of the problem,
considering the clarity, general-
ity, and (lastly) efficiency of
both.

We warm up to the subject with
a finger exercise that is always
popular in the MTA tutorial on
programming with style and
discipline: reversing the charac­
ters in a string. Spread your fin­
gers in front of you, palm out,
and imagine 10 letters pasted
on your fingernails -

ABCDE GHIJK

Reverse the left half of the string
(palm in). Reverse the right half
of the string -

EDCBA KJIHG

Finally, swap left and right halves -

KJIHG EDCBA

Reversing a 10-character string
required reversing two 5-charac­
ter strings, and we don't really
know how to do that - "turning
the palm in" was a black box
operation. Don't curse, recur(s) !
Apply the method to each 5-
character string and repeat until
reaching a 1-character string or a
0-character string. We do know
how to reverse those; just return

them unchanged. Figure 1 illus­
trates the method in M with a
divide-and-conquer algorithm
that often goes nicely with recur­
sion.

How many calls to $$reverse are
needed to reverse a string of N
characters? Each pass calls
$$reverse twice and cuts the
length in half, thus the number
of calls = 2 log2(N). Compare
the equivalent iterative function,
which is trivial in M. Iteration
requires N/2 passes through its
loop, but it is simpler than
$$reverse and certainly faster for
small strings. However, what
about reversinf a 10-million­
character string stored on disk?

Enough play with toys. Figure 2
contains a practical routine that

Illustrates recursion by reversing the sequence of characters in a string.
$$reverse("string") = "gnirts"

Algorithm: reverse(whole) =
reverse(right half)_reverse(left half)

reverse(string)n lengths length=$l(string)
i length<2 q string
q $$reverse($e(string,length\2+1,length))_

$$reverse($e(string,1,1ength\2))

Fig. 1 Reversing a String

36 M COMPUTING July/August 1996

visits all the nodes in an M array
- a depth-first tree walk.
Visiting a node entails three
steps:

1. Process the node with a rou­
tine supplied by the caller.

2. Visit the node's left-most
child, if any.

3. Visit the node's right-hand sib-
ling, if any.

In general, both recursion and
iteration require initialization,
work to be done on each pass,
and a termination condition. Do
not be overly concerned with the
stack requirements of recursion.
The 1995 ANSI standard speci­
fies a minimum of 127 stack lev­
els, which is adequate for most
real applications. M

Frederick L. Hiltz, Ph.D., devel­
ops medical information system
software at Brigham and
Women's Hospital, Boston,
Massachusetts.

fhiltz@bics.bwh.harvard.edu

Do you have a question that
deserves discussion? Have you
found a good answer to someone
else's question that you would
like to share? How about a con­
troversial question and a discus­
sion of pros and cons? If you pre­
fer that your name not be pub­
lished, please say so in your con­
tribution, which should be sent
to the Managing Editor at M
Computing.

Editorial Schedule

September, 1996 Issue
Topic: M and the Internet

December, 1996 Issue
Deadline for submission:

September 15, 1996
Topic: Business & Finance

MTA 1997 Annual
Conference in Boston at
the Hynes Convention

Center.

Week of May 18th

; Depth-first tree walk of a global or local variable (glvn) and
; all its descendants, applying the named function to each node I
that has a value. The function receives glvn = the name of
; the node, and may do what it will with the node - even kill
; it.
;Example:

d depthlst ("AP (101588) ","show") q
show w I,glvn," = ",@glvn q

depthlst(glvn,funcname)
i $d(@glvn)#lo d @funcname
d children(glvn)
q

children(parent) n lastsub

July/August 1996

s lastsub="" f s lastsub=$o(@parent@(lastsub)) q:lastsub="" d
d depthlst($name(@parent@(lastsub)),funcname)

q

Fig. 2 Depth-first tree walk

M COMPUTING 3 7

