
EVALUATING M

Evaluating Programming Languages:
The Power of M
by James Rooney

Many people often make blanket statements compar­
ing one programming language to another, for exam­
ple: "C is better than COBOi.:' or "Mis dead because
C+ + is easier." Technical personnel tend to take these
statements at face value, perhaps because they are so
attached to the idea of "new and improved" that they
do not analyze the validity of statements which rein­
force our idea of "technological correctness."

This is a small effort to apply objective and measurable
criteria to evaluating the pros and cons of programming
languages and software development environments. In
his 1989 book, Concepts of Programming Languages,
Robert Sebesta suggests the following criteria for evalu­
ating a programming language. (Please note that I use
the term "evaluate." Evaluation is our privilege as indi­
viduals. The world and the marketplace will be the ulti­
mate judge of the success or failure of a language or
technology. Does anyone remember ALGOL?)

Readability: Overall Simplicity

. A language with many elementary components is more
difficult to learn than one with a smaller number of
components. M, for example, has a very small number
of primary language components. Simplicity can also
be reflected by a minimum of "multiplicity features,"
meaning the ability to accomplish a simple operation in
more than one way. For example, in C an integer
counter can be incremented four ways: count = _count
+ 1; count++; ++count; count+= 1.

Contributing to the complexity of a language is "oper­
ator overloading." In M the + operator represents (1)
integer addition, (2) floating point (real number) addi­
tion, and (3) unary canonic representation. While (1)
and (2) are common to many languages and readily
accepted, (3) represents a feature unique to M.

12 .M COMPUTING

Orthogonality

By orthogonality, I mean a measure of the ways in
which a relatively small number of language compo­
nents can be combined with other language compo­
nents to build the control and data structures of a lan­
guage. Orthogonality is closely related to simplicity.
The more orthogonal the design of a language, the
fewer exceptions the language rules require. (All who
have struggled to learn English will testify to its diffi­
culty in learning due to the myriad of language excep­
tions.) In M one uses the SET command to both assign
values to a variable as well as to save data to disk.

Control Statements - The availability of control state­
ments within a language permits greater use of struc­
tured programming. Structured programming permits
easier top-to-bottom reading of a program. How often
do you HAVE to use a GOTO statement in M?

Data Structures - The presence of facilities to define
data types and data structures in a language is another
aid to readability, syntax checking, and debugging .
Which is easier to read and infer design purpose:
done= 1 or done= true?

Syntax Considerations - Variable identifiers (names)
with descriptive names are easier to read and under­
stand. Variable length, the character set used to make
up variables, and the availability of connector charac­
ters (SUMOFCLAIMS vs. SUM_OF_CLAIMS), all
improve readability.

Another aid to improved syntax and readability is the
use of special or reserved words. The use of words or
constructs as elements of program flow speed develop­
ment and ease code maintenance. Also important are
whether or not these words can be used as names for
program variables or subprocesses, as this may confuse
a person reading the program. For example, in M this

July/August 1996

is a valid (but very confusing) statement: DO:do
DO(DO) ; invoke a pile of dodo.

Writability - Writability is a measure of the ease in
which a language can create programs to accomplish a
specific task. A glaring example of poor language selec­
tion is using M to solve a system of linear equations.
Not only is M not optimized for this task, the program­
mer would have to develop (and debug) the subrou­
tines herself instead of relying on an existing library.

Simplicity and Orthogonality

As noted by Hoare (Hints on Programming Language
Design, Proceedings of ACM, 1973), a smaller number
of primitive constructs (simplicity) and a consistent set
of rules for applying them (orthogonality), is much bet­
ter than having a larger number of primitives.

Abstraction - In brief, abstraction means complicated
structures stated in simple ways by ignoring (or allow­
ing the underlying language or technology to handle)
many of the implementing details. A couple of exam­
ples in M come to mind: First, the B tree structure of
M disk storage is an elegant and efficient way to store
sparse, yet related, data. Second, judicious use of indi­
rection can greatly aid in "hiding" irrelevant detail
unrelated to the task at hand.

Reliability - Reliability is a measure of how well a pro­
gram performs to specifications under all conditions.

lype Checking - This is the testing for type compatibil­
ity between two variables. While a powerful feature in
M, the lack of type checking has led to countless pro­
gram errors.

Exception/Error Handling - The ability of a program to
gracefully intercept and handle runtime errors is a
great aid to program reliability and system support. A
measure of Visual Basie's lack of this feature is the
number of add-on tools vendors are offering to provide
this capability.

Aliasing - This refers to the ability of a language to have
two or more means of referencing the same address in
memory or on disk. It is becoming more accepted that the
ability to alias the same location is too dangerous to justify
its advantages. In M, while one could use indirection to
"alias" a global reference, widespread use of aliases will
guarantee unreadable and difficult-to-maintain code.

July/August 1996

Readability and Writability - A program written in a
language that allows one to naturally express concepts
and methods will be easier to read and write.

Cost - The ultimate cost of a programming language or
technology is a function of many things including train­
ing costs, availability of experienced programmers, how
quickly programmers become productive, etc. The cost
of writing programs is a function of the "expressive­
ness" of the language. Of the following, which is more
expressive and easier to develop: FORTRAN vs.
Assembler, COBOL vs. FORTRAN, or M vs.
COBOL?

A friend of mine is the Deputy Director of Software
Management for the Dept. of the Army, U.S. DoD. He
attributes the lack of acceptance outside DoD for the
Ada programming language to the complexity and
costs for designing and building systems in Ada (cost of
compilation and linking, cost of executing, and cost of
maintenance). (Hmm ... same problem but the flip side
of the coin?)

A program which is interpreted or which requires many
runtime checks (like PL/1) will prohibit fast code exe­
cution. It will also require increased maintenance.
There are many factors to maintenance cost (docu­
mentation, change and configuration management,
etc.), but the greatest impact on maintenance cost is
readability. How quickly can a programmer look at
unfamiliar code and determine its purpose and func­
tion?

Summary

A final note on programming languages. Most criteria,
including readability or writability are neither measur­
able or scientifically defined. They are, however, useful
concepts and provide valuable insight when evaluating
a given programming language.

I write this article not to refute or reinforce any posi­
tion on M made by persons throughout our industry,
but rather to offer to the M community and to others
watching us, a more formal and objective standard by
which one can evaluate a programming language or
technology. M

Jim Rooney is Manager for Oleen Healthcare Information
Management, Bethesda, MD.

M COMPUTING 13

