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Relational, Tree/Plex, and Object Oriented 
Databases 

by Arthur B. Smith 

This paper presents an informal comparison of three 
different foundations for database construction (mod­
els). It focuses especially on the relative strengths and 
weaknesses of each technique and the characteristics of 
database applications that best fit each of the three 
models, It should be noted at the outset that any of 
these techniques can be used to model any data system; 
it is a fairly mechanical process to convert between the 
different data models. The advantages lie in conve­
nience and simplicity for the database developers, 
maintainers, and users. Advantages come in two forms: 
theoretical advantages of one technique over another 
and pragmatic advantages, which often deal more with 
marketing realities than computer and information sci­
ences. Both of these factors will be examined. 

The relational ( or tablebased) database model is by far 
the most frequently used today and is well represented 
by such large commercial packages as Oracle, Sybase, 
Informix, Ingres, and Gupta as well as smaller packages 
such as DBaseIV, Access, Fo:xPro, Alpha4 and Paradox. 
All of these trace back to the pioneering theoretical 
work by Codd and others in 1970. Of the three systems, 
the relational model is the most well grounded mathe­
matically, supporting both a relational algebra and a 
relational calculus. The latter is the basis of the query 
language SQL and its superset ODBC, which are wide­
ly used for user interface communications in two- or 
three-tiered applications. 

The tree/plex model is represented by many of the ear­
liest database languages and systems including IBM's 
DL/1, M, and the Data Descriptor Language CODA­
SYL. All of these systems directly represent treestruc­
tured data and can handle "plex" data (which may have 
many-to-many relationships) to varying degrees. The 
mathematics governing these databases is the mathe­
matics of graph theory, as these databases have struc­
tures which are directed graphs. In many implementa­
tions of these systems it is possible to construct a (pos­
sibly limited) mapping to a relational model which 
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allows the use of SQL/ODBC as a query-level inter­
face. 

The object oriented databases are relatively new and 
still rather primitive in some respects. Most of the cur­
rent implementations such as Objectivity, Poet and 
Versant, are somewhat lacking in programmer and user 
conveniences, and the database theory itself is not as 
mathematically well-grounded as relational and 
tree/plex databases. These should not necessarily be 
taken as signs of inherent weakness in this modeling 
technique, however. Rather, they are indications of the 
youth of this technique. Serious effort is under way to 
remedy both of these shortcomings, and both relation­
al and tree/plex database systems are rushing to adopt 
object oriented models, usually on top of their own 
inherent structure. 

This paper will attempt to show the relative merits of 
each of these techniques and indicife the characteris­
tics of applications that will benefit from one technique 
over the others. Each of these techniques has its place, 
and careful selection of the database model is an 
important early step in the design of any large database 
application. 

Relational Database Management Systems 

Theoretical issues 

All relational databases are based on two-dimensional 
tables as the model for storing data. This model is cho­
sen because it is generally familiar to all users and is 
seen as a "natural" way of representing the data. Any 
data system, no matter how complex, can be reduced to 
a collection of tables ( or "relations" in the terminology 
of RDBMSs) with some redundancy. The redundancy 
is controlled by forcing the relations into canonical 
"Normal" forms which minimize unnecessary redun­
dancy without sacrificing associations between data 
elements. 
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Each relation (table) can be represented as a rectangu­
lar array with the following properties: 1. Each entry in 
a table represents exactly one data item; there are no 
repeating groups, 2. Each table is column homoge­
neous; all items in any column are of the same kind, 3. 
Each column is assigned a distinct name, 4. All rows are 
distinct; duplicate rows are not allowed, 5. Both the 
rows and columns are sequence independent; viewing 
either in a different sequence cannot change the infor­
mation content of the relation. 

Each row represents a single item which is being 
described. The columns represent the distinct pieces of 
information ( data elements) which are known about 
the item. Rows are commonly called "records" and 
columns are called "fields." 

In addition, the operations permitted on these rela­
tions are limited to Inserts and Deletes of records 
(Edits are implicitly permitted as a concatenation of an 
Insert and a Dolete.), Joins (in which a temporary rela­
tion is constructed by combining the information in two 
relations using common fields) and Selects (in which a 
subset of the records in a relation are selected based on 

'specific values or ranges of value in selected fields). 

Other manipulations of the data are not generally sup­
ported by relational databases. Addition of ad hoc data, 
which does not conform to any fields in data definition, 
for example, is prohibited. Adding a field to allow ad 
hoc data to be entered would require restructuring the 
database, often a lengthy process which can only be 
done when the database is not in use. 

In general, few real-world databases can be represent­
ed using a single relation table. Most applications use 
multiple relations which contain columns (fields) with 
the same name. These common data allow the joins of 
two or more relations to form meaningful associations. 
This is best shown by an example. Consider two rela­
tions, "EMPLOYEE" and "DEPARTMENT" shown in 
the following diagram: 

Employee 

Employee Number I Employee Name IDepanment Number I Location I 

········································"' 

Department! 

Department Number I Employee Number I Employee Number I Employee Number I 

Fig. 1 
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In this example, the Employee Number and 
Department Number fields are balded, indicating that 
these are the primary key fields. This means that data 
elements in these fields uniquely identify the row (i.e., 
no two rows have the same data element in the key 
field). Furthermore, the Department Number field is 
found in both relations. This allows a "join" of the two 
relations so that, for instance, the Department Name 
for any given Employee could be determined. 

In many cases, the join is not so simple. Suppose we need 
to find a way to determine the manager for any employee. 
We could construct the following data structure: 
Employee 1·············· .................................................................................... . 

Employee Number Employee Name Department Number Location Martager N~r 

Department j 
Department Number !Department Name !Manager Number !Budget I 

-········································ 
Manager H 
ManagerNumbe/' !Title IISpauofControl !Employee Number • 

······································· 

Fig. 2 

This seemingly intuitive form may cause problems 
because of the redundancy of the Manager Number 
link from Employee directly and through Department. 
This redundancy allows an employee's manager to be 
different from his department's manager. The above 
structure would be inappropriate if that is not allowed. 
Instead, a more appropriate structure would be: 

Employee, .................................................................................................. , 

-N~,1:::::.::--1~ I I 
Department 1 ! 
Department Num~ !Department Name !Manager Number jBudget I : 

........................................ 
Manager \ 
:IManagerNumbe; !Title !EmployeeNumber ISpauofControl 

Fig. 3 

This structure has removed the redundancy which 
allowed an Employee to have a separate Manager from 
the Manager of his Department, but in doing so has 

M COMPUTING 9 



eliminated the direct link which may be desirable for 
performance reasons in a large database. These trade­
offs between performance and data integrity are com­
mon in virtually all database models. 

A simple, real-world example can require an even more 
complex structure. Consider an Employee who is a 
member of more than one Department. The rules of 
joins in a relational database do not allow many-to­
many links (which might be designated with an arrow 
which is doubleheaded at each end). To represent a 
many-to-many relationship ( e.g., each Department has 
multiple Employees, and each Employee can be a 
member of Multiple Departments), we need to con­
struct a separate relation which is the crossproduct of 
the two cqlumns: 

I Employee Number I Employee Name I Location 

............................... 
Assignment 

!Assignment Number IEmplq,ee N~ !Department Number I 

.......................................... 
Department! 

IDepanmentNmnber I Department NamelManag,r Number 

................................................. ~ 
Manager 

I Manager Number 
1
Title IIEmp!q,ee N~ II Span of Control 

Fig. 4 

Here the Assignment relation contains a row for every 
employee department assignment. That is, if an 
Employee is part of a Department, then the respective 
Employee Number and Department Number are 
found in exactly one row of the Assignment relation. 
The Assignment Number field is actually unnecessary 
because the Employee Number and Department 
Number can jointly serve as a key. Most (but not all) 
RDBMSs allow relations which have a multiple field 
key. For those which do require a single key field in 
each relation, the structure would be as shown above. 

The "natural approach" of using tables may become 
even more strained when the data is sparse. Sparse data 
means that not every field in every row contains data. 
In some applications, data is very sparse-only a few of 
the many defined columns for a relation may contain 
data in any given row. When sparse data is the norm in 

10 M COMPUTING 

a real world application, the user typically does not 
think of the data as tabular. For example, consider a 
relation for a patient encounter (visit). It could contain 
fields which give key values for radiographs, ultra­
sounds, MRis, CTs, endoscopies, CBCs, Electrolytes, 
Creatinine/BUN, Pulse, Respiration, Temperature, 
Weight, and so on. Most of these fields would be blank 
for any given encounter. Thinking of these as fields in a 
table is at best somewhat counterintuitive. It is more 
natural to think of these data as a list of entries rather 
than fields in a table. This "userview" is not easily sup­
ported in a relational model; these different entries 
cannot be stored in a single table as they violate col­
umn-homogeneity-the data stored in the field are not 
all of the same kind as required for relational tables. 

Relational databases would be very inefficient if this 
sparse data were actually stored in a rectangular array 
internally, since space would be allocated for these 
empty data elements. In actual practice, most modern 
RDBMSs use tables as a "logical" structure, but use an 
internal "physical" structure which can more efficient­
ly store sparse data such as a BTree. The choice of 
physical structure is sometimes left to the database 
designer as a performance tuning issue . 

As a second example, consider a simplified version of a 
computer-based patient record (CPR). In this database 

\,.,. 

Problem 

!Problem Number I Problem Name 

Problem List 

..... I Problist Number IPrvblem Number llbtient Number II Date Assigned 

Patient 1··········································· 

[ I Patient Number I Name I Date of Birth 1sex 

IProclnst Number !Patient Nwnber !Procedure Number I Date Performed 

. .············ i I Procedure ········································· 

i j I Procedure Nurnbet I Description I Fee I 

~ . ~ 

Problem Assignment 1 

•···········IPr-obLi,t Number IProclnst Number 

Fig. 5 

Structural Integrity Rule: The 

Problem List and Procedure 

Instance entries cited in each row 

must both contain the same Patient 

Number. That is, a procedure 

instance can only be assigned a 

problem from that patient's prob­

lem list 
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we have information about patients and procedures 
which are done on these patients ( these procedures 
might be examinations, laboratory tests, etc.) Patients 
also have a set of problems which have been identified, 
and any of the procedures may be identified with one 
or more of these problems. A relational structure for 
this database is shown in figure 5. 

Figure 5 clearly shows how the complexity of a data 
model can grow when the relational constraints are 
applied to data which are not inherently tabular. The 
conceptual description of the database invoked only 
patients, procedures, and problems. Because of the 
many-to-many relationships between these items, it 
was necessary to introduce second-level relations 
(Problem List and Procedure Instance) and one third­
level relation (Problem Assignment). It also required 
the introduction of a structural integrity rule for the 
third-level relation in order to prevent introduction of · 
nonsensical data ( a procedure for one patient assigned 
the problem ofunother patient). 

Other relational structures can be used to represent 
this data, but they cannot be simpler without either lim­
iting the flexibility of the database ( e.g., by making it 
impossible to assign a problem to a patient without a 
procedure being assigned that problem) or violating 
the accepted rules for a normalized relational database 
(Third Normal Form). The argument for the "intuitive­
ness" of a relational database that has been advanced 
by Codd and others seems somewhat strained in situa­
tions like this. This is not to say that the argument is 
specious, merely that it does not apply equally well to 
all sets of data. 

Pragmatic issues 

The relational database model is currently the preemi­
nent database model in the computer industry and has 
held this position for approximately 20 years. This posi­
tion of strength, ironically, may end up becoming a 
position of weakness. While relational databases have 
come to dominate the database industry over the last 
twenty years, many experts feel that they are reaching 
the end of their lifetime as a dominant player, to be 
superseded by more modern and flexible models, 
notably the object oriented database model. There is 
some question as to whether the giants (Oracle, 
Informix, Sybase, Gupta, etc.) will be able to make the 
change in a timely enough fashion, given their huge 
installed customer base. The need to maintain back­
ward compatibility with this customer base can severe-
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ly hamper their abilities to keep up with advances in 
database technology. On the other hand, the comfort­
able financing of this large customer base makes devel­
opment easier. All of the large relational database ven­
dors are adding object oriented tools layered on top of 
an underlying relational structure. These tools are use­
ful during database design, but do not appear to offer 
any advantages at run time, since the underlying rela­
tional model is preserved. 

If you are looking for a mature, well-documented, well­
understood, well-maintained product for today, the 
RDBMSs are clearly the leaders. If you are looking for 
those properties ten years down the road, they may or 
may not be. Many experts expect there to be a major 
paradigm shift in database technology. Of course, pre­
dicting that some other company will be the next 
Oracle is easy; predicting which one will be the next 
Oracle is worthy of an oracle of a different sort.... 

Tree/Plex Database Management Systems 
(e.g., M) 

Theoretical Issues 

The structure for these DBMSs is based on trees and 
directed graphs rather than tables. In the tree-structured 
databases, the data is structured as a set of data nodes. 
Each node of the tree can have data stored with it and can 
have any number of ( directed) links to child nodes. There 
is generally no requirement that the child and/or sibling 
nodes be of like type. It usually is possible for a node to 
contain an open-ended list of links to multiple nodes of 
like type, allowing direct representation of many-to-many 
relationships. 

In plex structured databases, the tree requirement of each 
node having exactly one parent ( except for the root which 
has zero parents) is relaxed. Links may be restricted to 
forming a directed acyclic graph (DAG) (no sequence of 
directed links from a node can lead back to th~ node), or 
may allow any directed graph ( a set of nodes and directed 
links between pairs of nodes with no other restrictions). 

M implements the tree-structured database directly 
( child nodes are conceptually components of the par­
ent node) and allows external links ( single or in arrays) 
to any other nodes. 

The example we have used for relational databases might be 
implemented in M with the following structure ( assuming 
employees are part of just one department). -------M COMPUTING 11 



In this diagram, the parent node is the Department. 
Each department has a single Manager child and an 
array of Employee children. Note that the Manager is 
simply an Employee, identified by the Manager sub­
node which points to this special employee with the 
Employee Ptr. No reverse direction is needed on this 
pointer-an employee's manager can be determined by 
looking at the Manager child of the employee's parent 
node (Department). Note that the structure of the data 
is largely reflected in the structure of the database with­
out the use of separate linkages. 

Dept. Name 
Budget 

Fig. 6 

This structure, however, is inappropriate if the assump­
tion that an employee is in only one department is 
false. It also deals poorly with the situation when an 
employee changes departments, even if he is only ever 
in one at a time. This is because instead of merely 
changing a pointer (typically a single number) an entire 
set of data (the employee) must be moved from inside 
one data element (department) to inside another. 
While this usually does not require actually moving the 
data stored on the computer, it is almost always more 
complex than shifting a pointer. 

A more appropriate structure is shown in Fig 7. It con­
tains two types of top level nodes, Department and 
Employee, both of which are arrays (i.e., there may be 
multiple distinct instances of each). Each Department 
has an identified Manager, which includes a pointer to 
an Employee instance (the Employee who is the man­
ager of the department). Each Department node also 
has an array of pointers to Employee instances, repre­
senting all the employees in the department including 
the manager ( so that appointing a new manager does­
n't automatically remove the outgoing manager from 
the department). 

Similarly, each Employee has an array of Department 
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Span of Control 

Fig. 7 

Employees 
(array) 

subnodes identified, each of which consists of a pointer to 
the Department node and a flag to indicate if this employ­
ee is the manager of that department. Employees can be 
members ( or even managers) of multiple departments, 
simply by having multiple Department instances defined 
within the Employee. This data model contains all the 
same relationships as the relational example that was given 
above. While the structure of individual components is 
more complex than the individual tables of the relational 
model, the data model as a whole may be more intuitive in 
this presentation. 

Let us turn our attention now to the second example-the 
simplified patient record. Using a tree/plex structured 
database, we can construct the following data model for 
this database (see Fig 8). "'--

Problem List Number Date Assigned 

This data model has all of the same structural informa­
tion as the relational model we looked at earlier 
(including the constraint that a procedure instance can 
only be assigned a problem from that patient's problem 
list, which required a structural integrity rule in the 

Fig. 8 

Procedure Inst e # 
Date Performe 
Problem Ptr (a ay) 
Procedure Ptr 
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relational model). Again, the structure of the individ­
ual components is more complex than the tables used 
in the relational model, but the overall structure is 
much more intuitive, particularly since the structural 
integrity is guaranteed without external rules. 

Pragmatic Issues 

The structures defined above are based on the M lan­
guage/database system. This is an ANSI Standard pro­
gramming language that has been around for over 
twenty years and has undergone a number of substan­
tial revisions, most recently in 1995. In terms of market 
share, M has never been large and has been shrinking 
in relative quantity (but increasing in absolute quanti­
ty) for several years. It is used primarily in health care 
and banking, but is also used for a number of niche 
applications such as yellow pages production. M is 
declared dead at frequent intervals, but nevertheless 
continues on. 

·"."I. 

A weak spot in most M applications is the user inter­
face which until recently had to use the "roll-and-scroll" 
presentation model of the seventies, designed around 
dumb or moderately smart terminals. Within the last 
two years, most major M vendors have added facilities 
to allow development of sophisticated user interfaces 
using third party development tools. Full-featured 
interface development tools, such as those in many 
relational databases, have yet to be developed for M. 
The relatively small market share commanded by M 
slows development by M vendors ( due to lack of funds) 
and makes the market unattractive to most large third 
party developers. Current trends in third party devel­
opment tools towards adoption of open standards has 
made them much more accessible to M. 

Most M systems now allow M to communicate freely 
with relational databases using SQL or ODBC. M can 
serve as either the "front end" or the "back end" in 
these joint ventures. To use this bridge, however, the 
database administrator must define a mapping of the 
M data structure to a relational model, since SQL and 
ODBC both assume this model. 

There is a substantial effort in the standards body for 
M to extend the language to fully support object ori­
ented programming and object oriented database 
design and management. The flexibility of M data 
structures and the late binding of M data types allows a 
"true" object oriented approach (with the possible 
exception of Encapsulation) as opposed to the "lay-
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ered" approach of object oriented tools implemented 
on top of a relational database. 

If M becomes an object oriented database system and 
vendors supply interface development tools, it could 
become a major player in the industry. Without this, it 
is probably destined to remain a relatively minor play­
er in the database industry with the exception of the 
niches in which it has a loyal following 

Object Oriented Database Management 
Systems (OODBMS) 

Theoretical Issues 

The object oriented database is a relatively new concept 
and, as such, is somewhat less well-defined. The require­
ments for a database being "object oriented" differ 
depending on who one talks to. The features that seem to 
be common in most implementations are: 

1. Abstraction: Each real world "thing" that is kept track of 
in the database is a member of some "class." This class 
defines all properties, methods, public and private data 
structures, and routines which can be applied to "objects" 
(instances) of this class. A class defines an abstract data 
type. A "method" is a procedure invoked to do something 
to or with an object ( e.g.~ to print itself, or copy itself). A 
"property'' is a data value associated with each object of a 
class that identifies the state of that object in some way 
( e.g., color, age). Not all implementations support proper­
ties-they are short-hand for a method with no arguments 
( e.g., report your color, report your age). 

2. Encapsulation: The internal representation of the data 
and the implementation details of public and private meth­
ods (routines) is part of the class definition and is known 
only to this class. Access to objects of a class is only allowed 
through the properties and methods for that class or its 
parents ( see inheritance, below) and not through knowl­
edge of the internal implementation details. 

3. Inheritance ( single or multiple) Classes are defined as 
part of a class hierarchy. Each lower level class defini­
tion inherits the properties and methods of its parent, 
unless they are explicitly not inherited, or are overrid­
den by a new definition. In single inheritance, a class 
can have only one parent class (i.e., the class hierarchy 
is tree structured); in multiple inheritance, a class can 
be descended from multiple immediate parents (i.e., 
the class hierarchy is structured as a directed acyclic 
graph (DAG), but not necessarily a tree). Not all object 
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oriented databases support multiple inheritance. 

4. Polymorphism: Multiple classes may have the same 
name for their methods and properties even though 
they are deemed different. This allows access methods · 
to be written which will work appropriately with objects 
of very different classes, as long as they have the appro­
priately named methods/properties defined. For exam­
ple, the print method may be defined in many classes, 
but perform differently when invoked, based on the 
target object's class. 

5. Messaging: Interaction with objects is done by send­
ing a message to the object and ( optionally) receiving a 
message in response. This differs from calling a proce­
dure ( as is used in most other models). To invoke a 
method on an object, one sends a "method yourself" 
message to that object. The messaging paradigm is not 
always used in object oriented databases, but is used in 
the "truer" object oriented implementations. 

In an object oriented database, each type of thing being 
kept track of has a class associated with it, and the links 
between the classes are handled by properties and 
methods of the classes. To get a feel for how this is 
done, we will again look at our two simple examples. In 
the first example, we will define two top level classes: 
Department and Employee. We will also define a class, 
Manager, which is a subclass of Employee. The prop­
erties and methods which are inherited are shown in 
italics. 

Objects (instances of a class) can be created (instanti­
ated) by invoking the Instantiate method which is com­
mon to all classes. An employee object, once instanti­
ated, is assigned to the department by invoking the 
department's Hire method (with the employee as an 
argument). 

To make an employee a manager, one invokes the 
Promote method on the employee (with the depart­
ment as the argument). This instantiates a new object 
of class Manager, duplicating the inherited properties 
and then destroys the existing Employee instance 
( using the Destroy method, also common to all class­
es). It returns the new object reference (handle). Note 
that this method also needs to update the Employee 
List property for each department in the employee's 
Dept List to reflect the new ObjRef. Since Manager is 
a subclass of Employee, this Employee List will not 
have any type conflicts ( an object reference to an 
Employee can, in fact be an object reference to a 
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Manager, since that is a subclass of employee-the 
reverse does not hold true). 

Note also that the inheritance of the Promote method 
is explicitly blocked in the Manager subclass ( this is 
usually done by defining a Promote method at the 
Manager class level which does nothing). This is appro­
priate if an employee can only be the manager of a sin­
gle department. If a particular employee can manage 
multiple departments, the Promote method must apply 
to managers as well. In this case the Promote method 
must also update the Dept Manager property in any 
departments in the Dept List property of the Manager. 

EMPLOYEE 
Property 'lype 
EmpName Text 
EmpNumber Numeric 
Location Text 
Dept List List of ObjRef:Department 

Method Returns 
Promote(Dept) ObjRef:Manager 

Fig. 9 

MANAGER 
(subclass of Employee) 

lo, 

Property 'fype 
EmpName Text 
EmpNumber Numeric 
Location Text 
Dept List List of ObjRef-Department 
Span of Control Integer 
Title Text 
Method Returns 
<Promote> explicitly not inherited 

Fig. 10 

DEPARTMENT 

Property 'lype 
Dept Name Text 
Budget Dollar 
Employee List List of Obj Ref: 

Employee 
Dept Manager ObjRef: Manager 

Method Returns 
Hire(Employee) <nothing> 

Fig. 11 
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The object oriented implementation of the second 
example (the simplified patient record, Fig. 5) can be 
constructed in two different ways depending on 
whether or not properties can have structured values. 
In either case there will be a class for (abstract) prob­
lems and another for (abstract) procedures. The differ­
ence occurs in the construction of the patient class and 
any additional classes. If a property value can consist of 
separate pieces, the problem list and procedure list for 
a patient are probably best described as part of the 

ABSTRACT PROBLEM 

Pronertv 'Ivne 
Prob Name Text 
Code Text ( fixed length) 
Method Returns 

Fig. 12 

ABSTRACT PROCEDURE 

Property 'fype 
Proc Name Text 
Code Text ( fixed length) 
Fee Dollar 
Method Returns 

Fig. 13 

PATIENT 
Property 'fype 

Pt Name Text 
Pt Number Numeric 
Date of Birth TimeStamp 
Sex M/F 
Problist List of: 

ProbList Number Numeric 
Date Assigned TimeStamp 
Abstract Problem ObjRef:Problem 

ProcList List of: 
ProcList Number Numeric 
Date Performed TimeStamp 
ProbList Number Numeric 
Abstract Procedure ObjRef: 

Procedure 
Method Returns 

Add Problem(Prob Name) ProbList Number 
Add Procedure(Proc Name) ProcList Number 
Assign (ProcList Number, ProbList < nothing> 

Number) 

Fig. 14 
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patient object, consisting of lists of structured values as 
shown in figures 12-17. 

Not all object oriented databases allow these struc­
tured properties. In this case, Abstract Problem and 
Abstract Procedure classes are unchanged, but the 
Problem List property becomes a list of references to 
Problem Instance objects (a new class), and the 
Procedure List property becomes a similar list of refer 
ences to Procedure Instance objects ( also a new class). 
The Instance classes should not be confused with the 
Abstract classes defined above. 

In some object oriented databases, notably those built 
on top of a relational model, properties cannot contain 
a list of data. In this case, not surprisingly, the class def-

PROBLEM INSTANCE 
Pronertv 'Ivne 
Problem ObjRef: Abstract Problem 
Date Assigned TimeStamp 

Method Returns 

Fig. 15 

PROCEDURE INSTANCE 

Property 'fype 
Procedure ObjRef: Abstract Proc. 
Date Assigned TimeStamp 
Problems List of ObjRef:Abstract 

Problem 

Method Returns 

Fig. 16 

PATIENT 

Property 'Jvpe 
PtName Text 
Pt Number Numeric 
Date of Birth TimeStamp 
Sex M/F 
ProbList List of ObjRef:Problem Instance 
ProcList List of ObjRef:Procedure Instance 

Method Returns 
Add Problem(Prob Name) Problem Instance obj ref 
Add Procedure(Proc Name) Procedure Instance obj ref 
Assign (ProcList ObjRef, ProbList <nothing> 

Ob jRef) 

Fig. 17 
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initions will closely resemble the relational structure 
for this problem examined earlier. 

The advantage to the object oriented approach lies in 
shifting the focus away from the data structure (in par­
ticular the form of the links between data types) to the 
process by which these data are established, modified 
and destroyed. The actual data structures are an imple­
mentation detail best left to the inner workings of each 
class-and different classes may have very different 
implementations to handle efficiency tradeoffs. 
Maintenance of the database is accomplished just by 
knowing the methods and properties the classes make 
available. 

Pragmatic Issues 

The object oriented data base model is at a higher level 
of abstraction than the relational or tree/plex data­
base-the implementation of a class can be accom­
plished using either of these models, or some other 
model. Since the design focus is more concentrated on 
process than structure, however, it is important that 
one select an underlying model which has sufficient 
strength, flexibility, and efficiency for processing to 
allow appropriate construction of methods. 

Relational databases with their strict definition of 
structure and limited set of allowed operations are 
arguably inappropriate underlying platforms for an 
object oriented database. The M language/database 
system, with its more flexible data structure and more 
procedural approach, appears at first particularly well­
suited to serving as an underlying platform for an 
object oriented database system. It appears that object 
oriented approaches in M can outperform similar 
approaches in relational databases in speed of access 
and manipulation. 

There are a number of commercial offerings that are 
"pure" object oriented database systems. These include 
Objectivity, Poet, and Versant. In general, these sys­
tems are relatively immature and lack the development 
and support tools that are needed for large-scale data­
base implementation and maintenance. Furthermore, 
these object oriented systems seem to be quite slow at 
accessing large databases, lacking the efficiency of the 
relational or tree/plex databases. While very large, 
complex databases exist today in both relational and 
tree/plex systems, the databases constructed using 
object oriented databases are relatively small and sim­
ple. This is widely viewed as a sign only of the immatu­
rity of the technology and not the limit of its potential. 
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Summary and Recommendations 

The three different techniques for representing and 
manipulating data in a database each have their 
strengths and their weaknesses. The relational model is 
the most well-established and supported today and will 
likely remain so for at least the next several years. It is 
also the most strictly structured paradigm, which works 
both for it and against it. The functional requirements 
of the database system virtually dictate the structure of 
the database, creating a more uniform style which can 
be easier to support. On the other hand, data which 
does not naturally fit the table metaphor requires par­
ticularly complex and counterintuitive structures, 
which make support more difficult. In addition, a rela­
tional database is defined almost entirely by its struc­
ture, rather than by procedures or methods. This 
makes it easy to document the database using data dic­
tionary tools and requires less "back-end" program­
ming. On the other hand, if the functional specifica­
tions of the database. are unstable or evolving, changes 
must be made at the data dictionary level, usually 
involving periods of data inaccessibility and a revision 
of the structural documentation. 

A tree or plex structured database ( e.g., M) is much 
less inherently structured than an equivalent relational 
database. This allows greater freedom in the construc­
tion of the database which, in turn, allQ.ws for increased 
efficiency and/or a more "natural" modeling of the 
data. In addition, the flexibility and procedural nature 
of these databases make them more easily adapted to 
changing functional specifications as the database sys­
tem evolves. Additional and ad hoc data elements can 
be added without disabling database access, and new 
operations can more often be added without structural 
change to the data. 

On the other hand, the increased flexibility also carries 
a much greater burden in terms of documentation and 
local standards for structure and process. Failure to 
adequately document both the procedural and struc­
tural natures of the database lead to maintenance 
problems well beyond those seen in relational databas­
es. The burden of documentation may well be too 
severe if the data being modeled fits naturally into two­
dimensional tables. 

The object oriented approach to database systems has 
been widely heralded as the next major paradigm, 
replacing the relational model over the next several 
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years. It does allow an increased flexibility over the 
relational model, and focuses the development and 
documentation on the individual types of things being 
recorded rather than the overall structure of the data­
base. This promises to be particularly useful in con­
structing complex database systems which have many 
different kinds of data, particularly if there are fre­
quent many-to-many relationships which do not fit nat­
urally into tables. 

Unfortunately, the object oriented approach is largely 
untested and is not available today in the mature form 
of the other two approaches. The most accessible 
approach to an object oriented database is one layered 
on a relational or tree/plex model. Since the object ori­
ented approach is much more concerned with process 
than structure, it appears that the tree/plex model is the 
better fit. Construction of an object oriented database 
using a relational framework sacrifices the freedoms 
enjoyed during the design phase when it comes to 
implementation and maintenance. 

The choice of database model then, comes down to a 
careful examination of the data to be modeled and the 
resources available. Databases which are stable and 
well defined and which fit naturally into two dimen­
sional tables, and which require large-scale support are 
best constructed using a relational model such as 
Oracle or Sybase. Databases which are evolving and 
complex with multiple many-to-many relationships and 
sparse data, and which are defined largely in terms of 
process are best suited to the tree/plex model of M. 
Relatively small databases which are defined largely by 
the objects they describe and the actions those objects 
can perform are perhaps well-suited to object oriented 
approaches. Whether the anticipated object oriented 
database revolution is realized by layered approaches 
on top of relational models or M, or by native object 
oriented platforms unfortunately remains to be seen. 

While the above considerations are appropriate for 
new database projects, they neglect an important factor 
in upgrading existing databases, namely the system and 
staff resources already present. All of the systems 
shown are generally able to model the same data. 
Comparison tests between different systems are rare 
and often contradictory, but where they seem to agree 
is that a database designer/implementor familiar with 
any of these techniques can construct a more efficient 
database (in terms of both time and space) using the 
tools with which they are most familiar. A significant 
existing investment in personnel and/or software may 
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easily override any other factor in determining the best 
underlying platform for database construction. At 
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