
FEATURE ARTICLE

Relational, Tree/Plex, and Object Oriented
Databases

by Arthur B. Smith

This paper presents an informal comparison of three
different foundations for database construction (mod­
els). It focuses especially on the relative strengths and
weaknesses of each technique and the characteristics of
database applications that best fit each of the three
models, It should be noted at the outset that any of
these techniques can be used to model any data system;
it is a fairly mechanical process to convert between the
different data models. The advantages lie in conve­
nience and simplicity for the database developers,
maintainers, and users. Advantages come in two forms:
theoretical advantages of one technique over another
and pragmatic advantages, which often deal more with
marketing realities than computer and information sci­
ences. Both of these factors will be examined.

The relational (or tablebased) database model is by far
the most frequently used today and is well represented
by such large commercial packages as Oracle, Sybase,
Informix, Ingres, and Gupta as well as smaller packages
such as DBaseIV, Access, Fo:xPro, Alpha4 and Paradox.
All of these trace back to the pioneering theoretical
work by Codd and others in 1970. Of the three systems,
the relational model is the most well grounded mathe­
matically, supporting both a relational algebra and a
relational calculus. The latter is the basis of the query
language SQL and its superset ODBC, which are wide­
ly used for user interface communications in two- or
three-tiered applications.

The tree/plex model is represented by many of the ear­
liest database languages and systems including IBM's
DL/1, M, and the Data Descriptor Language CODA­
SYL. All of these systems directly represent treestruc­
tured data and can handle "plex" data (which may have
many-to-many relationships) to varying degrees. The
mathematics governing these databases is the mathe­
matics of graph theory, as these databases have struc­
tures which are directed graphs. In many implementa­
tions of these systems it is possible to construct a (pos­
sibly limited) mapping to a relational model which

8 M COMPUTING

allows the use of SQL/ODBC as a query-level inter­
face.

The object oriented databases are relatively new and
still rather primitive in some respects. Most of the cur­
rent implementations such as Objectivity, Poet and
Versant, are somewhat lacking in programmer and user
conveniences, and the database theory itself is not as
mathematically well-grounded as relational and
tree/plex databases. These should not necessarily be
taken as signs of inherent weakness in this modeling
technique, however. Rather, they are indications of the
youth of this technique. Serious effort is under way to
remedy both of these shortcomings, and both relation­
al and tree/plex database systems are rushing to adopt
object oriented models, usually on top of their own
inherent structure.

This paper will attempt to show the relative merits of
each of these techniques and indicife the characteris­
tics of applications that will benefit from one technique
over the others. Each of these techniques has its place,
and careful selection of the database model is an
important early step in the design of any large database
application.

Relational Database Management Systems

Theoretical issues

All relational databases are based on two-dimensional
tables as the model for storing data. This model is cho­
sen because it is generally familiar to all users and is
seen as a "natural" way of representing the data. Any
data system, no matter how complex, can be reduced to
a collection of tables (or "relations" in the terminology
of RDBMSs) with some redundancy. The redundancy
is controlled by forcing the relations into canonical
"Normal" forms which minimize unnecessary redun­
dancy without sacrificing associations between data
elements.

May 1996

Each relation (table) can be represented as a rectangu­
lar array with the following properties: 1. Each entry in
a table represents exactly one data item; there are no
repeating groups, 2. Each table is column homoge­
neous; all items in any column are of the same kind, 3.
Each column is assigned a distinct name, 4. All rows are
distinct; duplicate rows are not allowed, 5. Both the
rows and columns are sequence independent; viewing
either in a different sequence cannot change the infor­
mation content of the relation.

Each row represents a single item which is being
described. The columns represent the distinct pieces of
information (data elements) which are known about
the item. Rows are commonly called "records" and
columns are called "fields."

In addition, the operations permitted on these rela­
tions are limited to Inserts and Deletes of records
(Edits are implicitly permitted as a concatenation of an
Insert and a Dolete.), Joins (in which a temporary rela­
tion is constructed by combining the information in two
relations using common fields) and Selects (in which a
subset of the records in a relation are selected based on

'specific values or ranges of value in selected fields).

Other manipulations of the data are not generally sup­
ported by relational databases. Addition of ad hoc data,
which does not conform to any fields in data definition,
for example, is prohibited. Adding a field to allow ad
hoc data to be entered would require restructuring the
database, often a lengthy process which can only be
done when the database is not in use.

In general, few real-world databases can be represent­
ed using a single relation table. Most applications use
multiple relations which contain columns (fields) with
the same name. These common data allow the joins of
two or more relations to form meaningful associations.
This is best shown by an example. Consider two rela­
tions, "EMPLOYEE" and "DEPARTMENT" shown in
the following diagram:

Employee

Employee Number I Employee Name IDepanment Number I Location I

··"'

Department!

Department Number I Employee Number I Employee Number I Employee Number I

Fig. 1

May 1996

In this example, the Employee Number and
Department Number fields are balded, indicating that
these are the primary key fields. This means that data
elements in these fields uniquely identify the row (i.e.,
no two rows have the same data element in the key
field). Furthermore, the Department Number field is
found in both relations. This allows a "join" of the two
relations so that, for instance, the Department Name
for any given Employee could be determined.

In many cases, the join is not so simple. Suppose we need
to find a way to determine the manager for any employee.
We could construct the following data structure:
Employee 1·············· .. .

Employee Number Employee Name Department Number Location Martager N~r

Department j
Department Number !Department Name !Manager Number !Budget I

-··
Manager H
ManagerNumbe/' !Title IISpauofControl !Employee Number •

·······································

Fig. 2

This seemingly intuitive form may cause problems
because of the redundancy of the Manager Number
link from Employee directly and through Department.
This redundancy allows an employee's manager to be
different from his department's manager. The above
structure would be inappropriate if that is not allowed.
Instead, a more appropriate structure would be:

Employee, .. ,

-N~,1:::::.::--1~ I I
Department 1 !
Department Num~ !Department Name !Manager Number jBudget I :

..
Manager \
:IManagerNumbe; !Title !EmployeeNumber ISpauofControl

Fig. 3

This structure has removed the redundancy which
allowed an Employee to have a separate Manager from
the Manager of his Department, but in doing so has

M COMPUTING 9

eliminated the direct link which may be desirable for
performance reasons in a large database. These trade­
offs between performance and data integrity are com­
mon in virtually all database models.

A simple, real-world example can require an even more
complex structure. Consider an Employee who is a
member of more than one Department. The rules of
joins in a relational database do not allow many-to­
many links (which might be designated with an arrow
which is doubleheaded at each end). To represent a
many-to-many relationship (e.g., each Department has
multiple Employees, and each Employee can be a
member of Multiple Departments), we need to con­
struct a separate relation which is the crossproduct of
the two cqlumns:

I Employee Number I Employee Name I Location

...............................
Assignment

!Assignment Number IEmplq,ee N~ !Department Number I

..
Department!

IDepanmentNmnber I Department NamelManag,r Number

... ~
Manager

I Manager Number
1
Title IIEmp!q,ee N~ II Span of Control

Fig. 4

Here the Assignment relation contains a row for every
employee department assignment. That is, if an
Employee is part of a Department, then the respective
Employee Number and Department Number are
found in exactly one row of the Assignment relation.
The Assignment Number field is actually unnecessary
because the Employee Number and Department
Number can jointly serve as a key. Most (but not all)
RDBMSs allow relations which have a multiple field
key. For those which do require a single key field in
each relation, the structure would be as shown above.

The "natural approach" of using tables may become
even more strained when the data is sparse. Sparse data
means that not every field in every row contains data.
In some applications, data is very sparse-only a few of
the many defined columns for a relation may contain
data in any given row. When sparse data is the norm in

10 M COMPUTING

a real world application, the user typically does not
think of the data as tabular. For example, consider a
relation for a patient encounter (visit). It could contain
fields which give key values for radiographs, ultra­
sounds, MRis, CTs, endoscopies, CBCs, Electrolytes,
Creatinine/BUN, Pulse, Respiration, Temperature,
Weight, and so on. Most of these fields would be blank
for any given encounter. Thinking of these as fields in a
table is at best somewhat counterintuitive. It is more
natural to think of these data as a list of entries rather
than fields in a table. This "userview" is not easily sup­
ported in a relational model; these different entries
cannot be stored in a single table as they violate col­
umn-homogeneity-the data stored in the field are not
all of the same kind as required for relational tables.

Relational databases would be very inefficient if this
sparse data were actually stored in a rectangular array
internally, since space would be allocated for these
empty data elements. In actual practice, most modern
RDBMSs use tables as a "logical" structure, but use an
internal "physical" structure which can more efficient­
ly store sparse data such as a BTree. The choice of
physical structure is sometimes left to the database
designer as a performance tuning issue .

As a second example, consider a simplified version of a
computer-based patient record (CPR). In this database

\,.,.

Problem

!Problem Number I Problem Name

Problem List

..... I Problist Number IPrvblem Number llbtient Number II Date Assigned

Patient 1···

[I Patient Number I Name I Date of Birth 1sex

IProclnst Number !Patient Nwnber !Procedure Number I Date Performed

. .············ i I Procedure ···

i j I Procedure Nurnbet I Description I Fee I

~ . ~

Problem Assignment 1

•···········IPr-obLi,t Number IProclnst Number

Fig. 5

Structural Integrity Rule: The

Problem List and Procedure

Instance entries cited in each row

must both contain the same Patient

Number. That is, a procedure

instance can only be assigned a

problem from that patient's prob­

lem list

May 1996

we have information about patients and procedures
which are done on these patients (these procedures
might be examinations, laboratory tests, etc.) Patients
also have a set of problems which have been identified,
and any of the procedures may be identified with one
or more of these problems. A relational structure for
this database is shown in figure 5.

Figure 5 clearly shows how the complexity of a data
model can grow when the relational constraints are
applied to data which are not inherently tabular. The
conceptual description of the database invoked only
patients, procedures, and problems. Because of the
many-to-many relationships between these items, it
was necessary to introduce second-level relations
(Problem List and Procedure Instance) and one third­
level relation (Problem Assignment). It also required
the introduction of a structural integrity rule for the
third-level relation in order to prevent introduction of ·
nonsensical data (a procedure for one patient assigned
the problem ofunother patient).

Other relational structures can be used to represent
this data, but they cannot be simpler without either lim­
iting the flexibility of the database (e.g., by making it
impossible to assign a problem to a patient without a
procedure being assigned that problem) or violating
the accepted rules for a normalized relational database
(Third Normal Form). The argument for the "intuitive­
ness" of a relational database that has been advanced
by Codd and others seems somewhat strained in situa­
tions like this. This is not to say that the argument is
specious, merely that it does not apply equally well to
all sets of data.

Pragmatic issues

The relational database model is currently the preemi­
nent database model in the computer industry and has
held this position for approximately 20 years. This posi­
tion of strength, ironically, may end up becoming a
position of weakness. While relational databases have
come to dominate the database industry over the last
twenty years, many experts feel that they are reaching
the end of their lifetime as a dominant player, to be
superseded by more modern and flexible models,
notably the object oriented database model. There is
some question as to whether the giants (Oracle,
Informix, Sybase, Gupta, etc.) will be able to make the
change in a timely enough fashion, given their huge
installed customer base. The need to maintain back­
ward compatibility with this customer base can severe-

May 1996

ly hamper their abilities to keep up with advances in
database technology. On the other hand, the comfort­
able financing of this large customer base makes devel­
opment easier. All of the large relational database ven­
dors are adding object oriented tools layered on top of
an underlying relational structure. These tools are use­
ful during database design, but do not appear to offer
any advantages at run time, since the underlying rela­
tional model is preserved.

If you are looking for a mature, well-documented, well­
understood, well-maintained product for today, the
RDBMSs are clearly the leaders. If you are looking for
those properties ten years down the road, they may or
may not be. Many experts expect there to be a major
paradigm shift in database technology. Of course, pre­
dicting that some other company will be the next
Oracle is easy; predicting which one will be the next
Oracle is worthy of an oracle of a different sort....

Tree/Plex Database Management Systems
(e.g., M)

Theoretical Issues

The structure for these DBMSs is based on trees and
directed graphs rather than tables. In the tree-structured
databases, the data is structured as a set of data nodes.
Each node of the tree can have data stored with it and can
have any number of (directed) links to child nodes. There
is generally no requirement that the child and/or sibling
nodes be of like type. It usually is possible for a node to
contain an open-ended list of links to multiple nodes of
like type, allowing direct representation of many-to-many
relationships.

In plex structured databases, the tree requirement of each
node having exactly one parent (except for the root which
has zero parents) is relaxed. Links may be restricted to
forming a directed acyclic graph (DAG) (no sequence of
directed links from a node can lead back to th~ node), or
may allow any directed graph (a set of nodes and directed
links between pairs of nodes with no other restrictions).

M implements the tree-structured database directly
(child nodes are conceptually components of the par­
ent node) and allows external links (single or in arrays)
to any other nodes.

The example we have used for relational databases might be
implemented in M with the following structure (assuming
employees are part of just one department). -------M COMPUTING 11

In this diagram, the parent node is the Department.
Each department has a single Manager child and an
array of Employee children. Note that the Manager is
simply an Employee, identified by the Manager sub­
node which points to this special employee with the
Employee Ptr. No reverse direction is needed on this
pointer-an employee's manager can be determined by
looking at the Manager child of the employee's parent
node (Department). Note that the structure of the data
is largely reflected in the structure of the database with­
out the use of separate linkages.

Dept. Name
Budget

Fig. 6

This structure, however, is inappropriate if the assump­
tion that an employee is in only one department is
false. It also deals poorly with the situation when an
employee changes departments, even if he is only ever
in one at a time. This is because instead of merely
changing a pointer (typically a single number) an entire
set of data (the employee) must be moved from inside
one data element (department) to inside another.
While this usually does not require actually moving the
data stored on the computer, it is almost always more
complex than shifting a pointer.

A more appropriate structure is shown in Fig 7. It con­
tains two types of top level nodes, Department and
Employee, both of which are arrays (i.e., there may be
multiple distinct instances of each). Each Department
has an identified Manager, which includes a pointer to
an Employee instance (the Employee who is the man­
ager of the department). Each Department node also
has an array of pointers to Employee instances, repre­
senting all the employees in the department including
the manager (so that appointing a new manager does­
n't automatically remove the outgoing manager from
the department).

Similarly, each Employee has an array of Department

12 At COMPUTING

Span of Control

Fig. 7

Employees
(array)

subnodes identified, each of which consists of a pointer to
the Department node and a flag to indicate if this employ­
ee is the manager of that department. Employees can be
members (or even managers) of multiple departments,
simply by having multiple Department instances defined
within the Employee. This data model contains all the
same relationships as the relational example that was given
above. While the structure of individual components is
more complex than the individual tables of the relational
model, the data model as a whole may be more intuitive in
this presentation.

Let us turn our attention now to the second example-the
simplified patient record. Using a tree/plex structured
database, we can construct the following data model for
this database (see Fig 8). "'--

Problem List Number Date Assigned

This data model has all of the same structural informa­
tion as the relational model we looked at earlier
(including the constraint that a procedure instance can
only be assigned a problem from that patient's problem
list, which required a structural integrity rule in the

Fig. 8

Procedure Inst e #
Date Performe
Problem Ptr (a ay)
Procedure Ptr

May 1996

relational model). Again, the structure of the individ­
ual components is more complex than the tables used
in the relational model, but the overall structure is
much more intuitive, particularly since the structural
integrity is guaranteed without external rules.

Pragmatic Issues

The structures defined above are based on the M lan­
guage/database system. This is an ANSI Standard pro­
gramming language that has been around for over
twenty years and has undergone a number of substan­
tial revisions, most recently in 1995. In terms of market
share, M has never been large and has been shrinking
in relative quantity (but increasing in absolute quanti­
ty) for several years. It is used primarily in health care
and banking, but is also used for a number of niche
applications such as yellow pages production. M is
declared dead at frequent intervals, but nevertheless
continues on.

·"."I.

A weak spot in most M applications is the user inter­
face which until recently had to use the "roll-and-scroll"
presentation model of the seventies, designed around
dumb or moderately smart terminals. Within the last
two years, most major M vendors have added facilities
to allow development of sophisticated user interfaces
using third party development tools. Full-featured
interface development tools, such as those in many
relational databases, have yet to be developed for M.
The relatively small market share commanded by M
slows development by M vendors (due to lack of funds)
and makes the market unattractive to most large third
party developers. Current trends in third party devel­
opment tools towards adoption of open standards has
made them much more accessible to M.

Most M systems now allow M to communicate freely
with relational databases using SQL or ODBC. M can
serve as either the "front end" or the "back end" in
these joint ventures. To use this bridge, however, the
database administrator must define a mapping of the
M data structure to a relational model, since SQL and
ODBC both assume this model.

There is a substantial effort in the standards body for
M to extend the language to fully support object ori­
ented programming and object oriented database
design and management. The flexibility of M data
structures and the late binding of M data types allows a
"true" object oriented approach (with the possible
exception of Encapsulation) as opposed to the "lay-

May 1996

ered" approach of object oriented tools implemented
on top of a relational database.

If M becomes an object oriented database system and
vendors supply interface development tools, it could
become a major player in the industry. Without this, it
is probably destined to remain a relatively minor play­
er in the database industry with the exception of the
niches in which it has a loyal following

Object Oriented Database Management
Systems (OODBMS)

Theoretical Issues

The object oriented database is a relatively new concept
and, as such, is somewhat less well-defined. The require­
ments for a database being "object oriented" differ
depending on who one talks to. The features that seem to
be common in most implementations are:

1. Abstraction: Each real world "thing" that is kept track of
in the database is a member of some "class." This class
defines all properties, methods, public and private data
structures, and routines which can be applied to "objects"
(instances) of this class. A class defines an abstract data
type. A "method" is a procedure invoked to do something
to or with an object (e.g.~ to print itself, or copy itself). A
"property'' is a data value associated with each object of a
class that identifies the state of that object in some way
(e.g., color, age). Not all implementations support proper­
ties-they are short-hand for a method with no arguments
(e.g., report your color, report your age).

2. Encapsulation: The internal representation of the data
and the implementation details of public and private meth­
ods (routines) is part of the class definition and is known
only to this class. Access to objects of a class is only allowed
through the properties and methods for that class or its
parents (see inheritance, below) and not through knowl­
edge of the internal implementation details.

3. Inheritance (single or multiple) Classes are defined as
part of a class hierarchy. Each lower level class defini­
tion inherits the properties and methods of its parent,
unless they are explicitly not inherited, or are overrid­
den by a new definition. In single inheritance, a class
can have only one parent class (i.e., the class hierarchy
is tree structured); in multiple inheritance, a class can
be descended from multiple immediate parents (i.e.,
the class hierarchy is structured as a directed acyclic
graph (DAG), but not necessarily a tree). Not all object

M COMPUTING 13

oriented databases support multiple inheritance.

4. Polymorphism: Multiple classes may have the same
name for their methods and properties even though
they are deemed different. This allows access methods ·
to be written which will work appropriately with objects
of very different classes, as long as they have the appro­
priately named methods/properties defined. For exam­
ple, the print method may be defined in many classes,
but perform differently when invoked, based on the
target object's class.

5. Messaging: Interaction with objects is done by send­
ing a message to the object and (optionally) receiving a
message in response. This differs from calling a proce­
dure (as is used in most other models). To invoke a
method on an object, one sends a "method yourself"
message to that object. The messaging paradigm is not
always used in object oriented databases, but is used in
the "truer" object oriented implementations.

In an object oriented database, each type of thing being
kept track of has a class associated with it, and the links
between the classes are handled by properties and
methods of the classes. To get a feel for how this is
done, we will again look at our two simple examples. In
the first example, we will define two top level classes:
Department and Employee. We will also define a class,
Manager, which is a subclass of Employee. The prop­
erties and methods which are inherited are shown in
italics.

Objects (instances of a class) can be created (instanti­
ated) by invoking the Instantiate method which is com­
mon to all classes. An employee object, once instanti­
ated, is assigned to the department by invoking the
department's Hire method (with the employee as an
argument).

To make an employee a manager, one invokes the
Promote method on the employee (with the depart­
ment as the argument). This instantiates a new object
of class Manager, duplicating the inherited properties
and then destroys the existing Employee instance
(using the Destroy method, also common to all class­
es). It returns the new object reference (handle). Note
that this method also needs to update the Employee
List property for each department in the employee's
Dept List to reflect the new ObjRef. Since Manager is
a subclass of Employee, this Employee List will not
have any type conflicts (an object reference to an
Employee can, in fact be an object reference to a

14 M COMPUTING

Manager, since that is a subclass of employee-the
reverse does not hold true).

Note also that the inheritance of the Promote method
is explicitly blocked in the Manager subclass (this is
usually done by defining a Promote method at the
Manager class level which does nothing). This is appro­
priate if an employee can only be the manager of a sin­
gle department. If a particular employee can manage
multiple departments, the Promote method must apply
to managers as well. In this case the Promote method
must also update the Dept Manager property in any
departments in the Dept List property of the Manager.

EMPLOYEE
Property 'lype
EmpName Text
EmpNumber Numeric
Location Text
Dept List List of ObjRef:Department

Method Returns
Promote(Dept) ObjRef:Manager

Fig. 9

MANAGER
(subclass of Employee)

lo,

Property 'fype
EmpName Text
EmpNumber Numeric
Location Text
Dept List List of ObjRef-Department
Span of Control Integer
Title Text
Method Returns
<Promote> explicitly not inherited

Fig. 10

DEPARTMENT

Property 'lype
Dept Name Text
Budget Dollar
Employee List List of Obj Ref:

Employee
Dept Manager ObjRef: Manager

Method Returns
Hire(Employee) <nothing>

Fig. 11
May 1996

The object oriented implementation of the second
example (the simplified patient record, Fig. 5) can be
constructed in two different ways depending on
whether or not properties can have structured values.
In either case there will be a class for (abstract) prob­
lems and another for (abstract) procedures. The differ­
ence occurs in the construction of the patient class and
any additional classes. If a property value can consist of
separate pieces, the problem list and procedure list for
a patient are probably best described as part of the

ABSTRACT PROBLEM

Pronertv 'Ivne
Prob Name Text
Code Text (fixed length)
Method Returns

Fig. 12

ABSTRACT PROCEDURE

Property 'fype
Proc Name Text
Code Text (fixed length)
Fee Dollar
Method Returns

Fig. 13

PATIENT
Property 'fype

Pt Name Text
Pt Number Numeric
Date of Birth TimeStamp
Sex M/F
Problist List of:

ProbList Number Numeric
Date Assigned TimeStamp
Abstract Problem ObjRef:Problem

ProcList List of:
ProcList Number Numeric
Date Performed TimeStamp
ProbList Number Numeric
Abstract Procedure ObjRef:

Procedure
Method Returns

Add Problem(Prob Name) ProbList Number
Add Procedure(Proc Name) ProcList Number
Assign (ProcList Number, ProbList < nothing>

Number)

Fig. 14
May 1996

patient object, consisting of lists of structured values as
shown in figures 12-17.

Not all object oriented databases allow these struc­
tured properties. In this case, Abstract Problem and
Abstract Procedure classes are unchanged, but the
Problem List property becomes a list of references to
Problem Instance objects (a new class), and the
Procedure List property becomes a similar list of refer
ences to Procedure Instance objects (also a new class).
The Instance classes should not be confused with the
Abstract classes defined above.

In some object oriented databases, notably those built
on top of a relational model, properties cannot contain
a list of data. In this case, not surprisingly, the class def-

PROBLEM INSTANCE
Pronertv 'Ivne
Problem ObjRef: Abstract Problem
Date Assigned TimeStamp

Method Returns

Fig. 15

PROCEDURE INSTANCE

Property 'fype
Procedure ObjRef: Abstract Proc.
Date Assigned TimeStamp
Problems List of ObjRef:Abstract

Problem

Method Returns

Fig. 16

PATIENT

Property 'Jvpe
PtName Text
Pt Number Numeric
Date of Birth TimeStamp
Sex M/F
ProbList List of ObjRef:Problem Instance
ProcList List of ObjRef:Procedure Instance

Method Returns
Add Problem(Prob Name) Problem Instance obj ref
Add Procedure(Proc Name) Procedure Instance obj ref
Assign (ProcList ObjRef, ProbList <nothing>

Ob jRef)

Fig. 17

At COMPUTING 15

initions will closely resemble the relational structure
for this problem examined earlier.

The advantage to the object oriented approach lies in
shifting the focus away from the data structure (in par­
ticular the form of the links between data types) to the
process by which these data are established, modified
and destroyed. The actual data structures are an imple­
mentation detail best left to the inner workings of each
class-and different classes may have very different
implementations to handle efficiency tradeoffs.
Maintenance of the database is accomplished just by
knowing the methods and properties the classes make
available.

Pragmatic Issues

The object oriented data base model is at a higher level
of abstraction than the relational or tree/plex data­
base-the implementation of a class can be accom­
plished using either of these models, or some other
model. Since the design focus is more concentrated on
process than structure, however, it is important that
one select an underlying model which has sufficient
strength, flexibility, and efficiency for processing to
allow appropriate construction of methods.

Relational databases with their strict definition of
structure and limited set of allowed operations are
arguably inappropriate underlying platforms for an
object oriented database. The M language/database
system, with its more flexible data structure and more
procedural approach, appears at first particularly well­
suited to serving as an underlying platform for an
object oriented database system. It appears that object
oriented approaches in M can outperform similar
approaches in relational databases in speed of access
and manipulation.

There are a number of commercial offerings that are
"pure" object oriented database systems. These include
Objectivity, Poet, and Versant. In general, these sys­
tems are relatively immature and lack the development
and support tools that are needed for large-scale data­
base implementation and maintenance. Furthermore,
these object oriented systems seem to be quite slow at
accessing large databases, lacking the efficiency of the
relational or tree/plex databases. While very large,
complex databases exist today in both relational and
tree/plex systems, the databases constructed using
object oriented databases are relatively small and sim­
ple. This is widely viewed as a sign only of the immatu­
rity of the technology and not the limit of its potential.

16 M COMPUTING

Summary and Recommendations

The three different techniques for representing and
manipulating data in a database each have their
strengths and their weaknesses. The relational model is
the most well-established and supported today and will
likely remain so for at least the next several years. It is
also the most strictly structured paradigm, which works
both for it and against it. The functional requirements
of the database system virtually dictate the structure of
the database, creating a more uniform style which can
be easier to support. On the other hand, data which
does not naturally fit the table metaphor requires par­
ticularly complex and counterintuitive structures,
which make support more difficult. In addition, a rela­
tional database is defined almost entirely by its struc­
ture, rather than by procedures or methods. This
makes it easy to document the database using data dic­
tionary tools and requires less "back-end" program­
ming. On the other hand, if the functional specifica­
tions of the database. are unstable or evolving, changes
must be made at the data dictionary level, usually
involving periods of data inaccessibility and a revision
of the structural documentation.

A tree or plex structured database (e.g., M) is much
less inherently structured than an equivalent relational
database. This allows greater freedom in the construc­
tion of the database which, in turn, allQ.ws for increased
efficiency and/or a more "natural" modeling of the
data. In addition, the flexibility and procedural nature
of these databases make them more easily adapted to
changing functional specifications as the database sys­
tem evolves. Additional and ad hoc data elements can
be added without disabling database access, and new
operations can more often be added without structural
change to the data.

On the other hand, the increased flexibility also carries
a much greater burden in terms of documentation and
local standards for structure and process. Failure to
adequately document both the procedural and struc­
tural natures of the database lead to maintenance
problems well beyond those seen in relational databas­
es. The burden of documentation may well be too
severe if the data being modeled fits naturally into two­
dimensional tables.

The object oriented approach to database systems has
been widely heralded as the next major paradigm,
replacing the relational model over the next several

May 1996

years. It does allow an increased flexibility over the
relational model, and focuses the development and
documentation on the individual types of things being
recorded rather than the overall structure of the data­
base. This promises to be particularly useful in con­
structing complex database systems which have many
different kinds of data, particularly if there are fre­
quent many-to-many relationships which do not fit nat­
urally into tables.

Unfortunately, the object oriented approach is largely
untested and is not available today in the mature form
of the other two approaches. The most accessible
approach to an object oriented database is one layered
on a relational or tree/plex model. Since the object ori­
ented approach is much more concerned with process
than structure, it appears that the tree/plex model is the
better fit. Construction of an object oriented database
using a relational framework sacrifices the freedoms
enjoyed during the design phase when it comes to
implementation and maintenance.

The choice of database model then, comes down to a
careful examination of the data to be modeled and the
resources available. Databases which are stable and
well defined and which fit naturally into two dimen­
sional tables, and which require large-scale support are
best constructed using a relational model such as
Oracle or Sybase. Databases which are evolving and
complex with multiple many-to-many relationships and
sparse data, and which are defined largely in terms of
process are best suited to the tree/plex model of M.
Relatively small databases which are defined largely by
the objects they describe and the actions those objects
can perform are perhaps well-suited to object oriented
approaches. Whether the anticipated object oriented
database revolution is realized by layered approaches
on top of relational models or M, or by native object
oriented platforms unfortunately remains to be seen.

While the above considerations are appropriate for
new database projects, they neglect an important factor
in upgrading existing databases, namely the system and
staff resources already present. All of the systems
shown are generally able to model the same data.
Comparison tests between different systems are rare
and often contradictory, but where they seem to agree
is that a database designer/implementor familiar with
any of these techniques can construct a more efficient
database (in terms of both time and space) using the
tools with which they are most familiar. A significant
existing investment in personnel and/or software may

May 1996

easily override any other factor in determining the best
underlying platform for database construction. At

Art Smith received his masters degrees in chemistry and computer
science and information systems at the University of Delaware in
1985 and has worked in scientific and database applications since
that time. He now works for the University of Missouri Veterinary
Medical Teaching Hospital and does consulting with Emergent
Technologies.

Professional
search services
for professionals. ~

PRO-MED Personnel specializes
in the recruitment and placement of
M Professionals nationwide.

Our consultants are highly visible
within the M community. So when
attracting a highly selective group of
candidates or searching out the perfect
career move is the top priority, PRO-MED
can meet the challenge.

PRO-MED Personnel Services Inc.
3780 Tampa Road, Suite B-1 02
Oldsmar, Florida 346 77
VOX: 800-526-5885
FAX: 81 3-855-0032
E-Mail: jimw@promed.com

'Dedicated to the M community"

At COMPUTING 17

