
JUST ASK!

Threads

by Frederick Hiltz, Stage Manager

"Threads" has become a hot
topic now that popular desktop
environments support this useful
programming technique. Long
available in many operating sys
tems and in the M language, the
rediscovered method deserves a
place in every expert program
mer's tool box. Properly used,
threads can increase speed, sim
plify the construction of a pro
gram, and enhance the user's
perception of its execution.
Threads are separate paths
through one program that exe
cute concurrently, share variables,
and synchronize their operations.

The operating system literature
discusses multithreading and
multitasking with esoteric terms
like lightweight process and
mutex. Do not let these distract
you; our familiar M has what it
takes.

Concurrent execution: The JOB
command starts a new thread.
Most implementations do this
quickly enough for the new
thread to contribute without
noticeable delay.

Shared variables: Globals are so
familiar that we forget how
strange this concept is in other lan
guages.

Synchronization: A global variable or
a LOCK command synchronizes
the threads.

34 M COMPUTING

The most common way to assem
ble these pieces into a multi
threaded program is the
boss/worker model. The boss
thread controls everything, dis
patching worker threads for spe
cific tasks and coordinating their
results. For example:

• A word processor runs its
spelling checker after the typist
enters each word. In its own
thread, the spelling checker does
not slow the boss thread, which
learns after each key stroke
whether the spelling checker
found an error.

• While a nurse enters a med
ication order, the program com
pares it with the patient's aller
gies to medications. The allergy
check presents its warning
before the order is completed.

• Several computers execute
pieces of a very large computa
tion.

Another multithreading archi
tecture is the producer/consumer
model. Neither thread controls
the other, but one produces a
resource while another con
sumes it, and neither need wait
for the other. For example:

• A radio page function takes
pager messages from calling pro
grams, places them in shared

variables, and returns immedi
ately. A consumer thread sends
the messages when the radio
transmitter becomes available; it
marks them "sent" in the shared
variables, where the producing
function can check their status.

• A language processing pro
gram passes text through three
stages that identify words, parse
syntax, and analyze semantics. In
separate threads the three stages
run faster on a multiprocessor
computer.

When should one consider mul
tithreading? If an interactive
program displays "Please wait
for ... " (or ought to), then look
for a chance to move the
obstruction into a separate
thread. Does a task have two
long parts in sequence that could
run in parallel? Perhaps one
thread can continue while anoth
er blocks waiting for a resource.
A compute-bound process and
an I/O-bound process can over
lap successfully on a single
processor, and multiple proces
sors can do wonders for intensive
computations. Finally, do not
overlook the simplicity of a pro
gram constructed from single
purpose threads.

There's no such thing as a free
lunch, of course. Because perfor
mance often prompts the choice

May 1996

of multithreading, some experi
ments may be useful to measure
the costs and benefits in your M
environment. Here are some
topics to consider:

Concurrent execution: Is the
JOB command fast enough?
Plan a strategy for when the
implementation cannot start
any more jobs. Provide a way for
the threads to identify each
other. -

Shared variables: Arguments of
the JOB command are fast but
limited. Global variables are
surprisingly fast when jobs share
their memory buffers. Some
implementations offer job-to
job communi:6.ation through
shared memory.

Synchronization: Here lie most
of the interesting parts of multi
threading. Common back
ground tasks such as filing and
print spooling work alone, but
threads must coordinate their
work. Sometimes a global "done
flag" set by a worker and exam
ined by a boss is adequate, but a
robust program usually requires
more. Depending on the appli
cation, a worker might report
progress, several different fail
ures, and success to the boss.
What if the worker never starts?
What if it stalls before report
ing? How long should a con
sumer wait for a producer to
produce? You can program
these with timed locks guarding
global status variables of any
complexity.

For example, a boss thread
starts three worker threads
named 1, 2, and 3. Each worker
locks "'ALEX(name). When
the boss is ready for results, it

May 1996

executes LOCK "'ALEX::10,
which succeeds when all three
workers have halted and placed
their statuses in a shared vari
able, or fails when any worker
takes an unreasonable time.

This example does not account
for the worker that never starts
and thus never locks its
"'ALEX(name). Can you devise
a synchronization method that
informs the boss if this occurs?
Note that a tight loop checking a
global variable (spinning) is bad
form-it bums resources needed
by the workers. Try your hand;
this might be your first step into
the world of threads.

Reference

A. D. Birrell, An Introduction to
Programming with Threads, Sys
tems Research Center, Digital
Equipment Corp., Palo Alto,
Calif., 1989.

Frederick L. Hiltz, Ph.D., develops med
ical information system software at
Brigham and Women's Hospital, Boston,
Massachusetts. His E-mail address is:
fhiltz@bics.bwh.harvard.edu

Do you have a question that deserves
discussion? Have you found a good
answer to someone else's question that
you would like to share? How about a
controversial question and a discussion of
pros and cons? If you prefer that your
name not be published, please say so in
your contribution, which should be sent to
the Managing Editor at M Computing.

1996-1997
M Technology
Association
Board of Directors
John E Covin (1996-1998)
Chair
Corning Pharmaceutical Services
210 Carnegie Center
Princeton, NJ 08540
Phone: 609-452-4432
Fax: 609-452-9865

David A. Holbrook (1995-1997)
Vice Chair
InterSystems Corporation
One Memorial Drive
Cambridge, MA 02142
Phone: 617-621-0600
Fax: 617-494-1631
E,mail: holbrook@intersys.com

Donald A. Gall (1996-1998)
Executive Director
Omega Computer Systems, Inc.
3875 N. 44th Street, #200
Phoenix, AZ 85018
Phone: 602-952-5240
Fax: 602-952-5250

Elliot A. Shefrin (1995-1997)
Treasurer
Longitudinal Studies Branch, Box 06
NIH/Gerontology Research Center
4940 Eastern Avenue
Baltimore, MD 21224-2780
Phone: 410-558-8145
Fax: 410-558-8321
E-mail: shefrin@nih.gov

Richard G. Davis, Ph.D. (1996-1998)
Immediate Past Chair
Mformation SYStems, Inc.
209 Edgebrook Drive
Boylston, MA 01505-0505
Phone: 508-869-6976
Fax:508-869-6008
E-mail: richdav@ultranet.com

John P. Glaser, Ph.D.(1995-1997)
Member at Large
Brigham & Women's Hospital
75 Francis Street
Boston, MA 02115
Phone: 617-732-6408
Fax: 617-732-5831

Robert P. Mappes (1996-1998)
Member at Large
Micronetics Design Corporation
1127 Wagon Wheel Drive
Skaneateles, NY 13152
Phone: 315-685-2037
Fax: 315-685-2041
E-mail: rpm@localnet.com

Rick D.S. Marshall (1995-1997)
Member at Large
Dept. of Veterans Affairs, IRM-FO
1660 South Columbus Way
Seattle, WA 98108-1597
Phone: 206-764-2283
Fax: 206-764-2923
E-mail: fdsm@forum.va.gov

Gregg Seppala (1996-1998)
Member at Large
Dept. of Veterans Affairs
Office of the CIO
810 Vermont Avenue, N.W.
Washington, D.C. 20420
Phone: 202-565-7778
Fax: 202-565-7874
E-mail: seppala.g@forum.va.gov

M COMPUTING 35

