
FEATURE ARTICLE

Why OOM is Better than Traditional M

by Erik Zoltan

Why You May Not Believe This
Article

It is often difficult to explain to people why Object
Oriented M (OOM) is "better" than traditional M pro
gramming: it seems as though the moment you start
presenting examples, the most knowledgeable people
start to raise objections to them. This is because there
is a temptation to present rather simple examples. But
that is exactly the wrong approach, as the following ide
alized graph makes clear.

Traditional
M Solution

Increased
Application
Complexity

Increased 1 Development
Time

Fig. 1. Comparison of OOM and Traditional M
Programming

This graph does not represent the results of a particu
lar study or project, but it does illustrate well-docu
mented relationships; similar graphs can be found in
the 00 literature. If the claims made in the 00 litera
ture are true, then they have the following implications:

simpler examples may actually take longer to develop
using OOM than with traditional M programming.

the benefits of QOM should be most clearly seen
with more complex applications that evolve over time.

18 M COMPUTING

traditional programming techniques will encounter a
"complexity wall," making it harder and harder to
add new features.

OOM designs, by contrast, will eventually approach
linear development time, meaning that new features
will not be much harder to add. ·

This article will argue that OOM possesses advantages
over traditional M programming for larger-scale devel
opment projects. It will do this by contrasting a tradi
tional, "procedural" M application that has encoun
tered the complexity wall, with an OOM solution that
avoids the wall. This OOM solution was designed with
EsiObjects 2.0, an object-oriented M development
environment by ESI Technology Corporation, that now
conforms to the forthcoming ANSI M 00 binding. A
card game application is used because it is simple
enough to explain in a short article, relatively non-tech
nical, yet offers adequate scope to illustrate the com
plexity wall. Much more complex M applications,
though they might provide better illustrations, would
take longer to adequately explain.

Poker Game: Initial Design

Traditional Solution

Imagine an application that plays 5-card draw poker.
How might one code such an application in M? There
is an array of available cards (the deck) and one array
for each hand; optionally, discards might be stored in
another array. The computer always deals and acts as
one of the players. It needs to know how to determine
the winner and how to make decisions regarding its
own discards. Betting also needs to be supported.

Determining the winner is an important problem. The
procedural solution uses an extrinsic function to assign
a numeric "weight" to a hand. This function looks for
each kind of hand in a predefined order: straights and

May 1996

WEIGHT(HAND) ; Return Hand's Weight
N CARD,SUIT,X,CL,SL,FLUSH,STR,HIGH,MATCH
Q:$D(HAND)<l0 ""
F X=l:1:5 S CARD=HAND(X) D

S SUIT=$E(CARD,$L(CARD))
S $E(CARD,$L(CARD))=""
S CARD=$S(CARD="J":ll,CARD="Q":12,
CARD="K":13,CARD="A":14,1:CARD)-l
S CL(CARD)=$G(CL(CARD))+l
S SL(SUIT)=$G(SL(SUIT))+l

S FLUSH=$O(SL($O(SL(""))))=""
S CARD=$O(CL("")) ,HIGH=$O(CL("") ,-1)
F X=l:1:4 S STR=$D(CL(CARD+X)) Q:'STR
I STR,FLUSH Q 700+HIGH
Q:FLUSH 400+HIGH
Q:STR 300+HIGH
S CARD="" F X=l:1:5 S MATCH(X)=0
F S CARD=$O(CL(CARD)) Q:CARD="" S X=CL(

CARD),MATCH(X)=MATCH(X)+l
S (X,HIGH)=0,CARD=""
F S CARD=$□ (CL (CARD)) Q: CARD='"' D

S:CL(CAR~>X X=CL(CARD) ,HIGH=CARD
Q:MATCH(4) 600+HIGH
I MATCH(3) ,MATCH(2) Q 500+HIGH
Q:MATCH(3) 200+HIGH
Q:MATCH(2)=2 l00+HIGH
Q:MATCH(2) 50+HIGH
Q HIGH

Fig. 2. $$WEIGHT Function

flushes, 4-of-a-kind, full house, 3-of-a-kind, two pairs,
one pair or finally, nothing at all. The player whose
hand has the highest weight is the winner and collects
the pot for that hand. For example, a hand in which
there is a full house receives a weight between 501 and
513, depending on the value of the tripled cards. But a
straight flush receives a value between 705 and 713, so
it clearly beats a full house. This function, invoked as
$$WEIGHT(.HAND), is illustrated in Fig. 2.

Pot

Fig. 3 Components of CardGame Object
May 1996

OOM Solution

The initial OOM solution requires significantly more
work. Classes are created to match the elements of a
card game. There is a CardGame object containing a
Pot (the money that has been bet), a collection of
Player objects, and one Dealer.

Because of a principle called encapsulation, objects
cannot directly modify the internal states of other
objects. Instead, they communicate by sending messages
back and forth. Thus, Players request additional cards
from the Dealer that obtains them from its Deck. The
Deck is a discrete object encapsulating (containing) its
cards, just as the Dealer encapsulates the Deck. It
would be improper for the Dealer to directly modify
the Hand of each Player, since Hand is an internal
component of the Player object. The Dealer must send
a message requesting direct access to a Player's Hand;
the Player returns a reference to the Hand object.
Similarly, the Dealer cannot directly modify the Hand:
it sends the Hand a message telling it which card(s) to
add. The Hand then implements this request, or it
could refuse to do so-it might reject the attempt to
add a sixth card, for example.

HandEvaluator

StraightRecognizer

FlushRecognizer

OfAKindRecognizer OfAKindRecognizer

Fig. 4. HandEvaluator Object

To determine a winner, the OOM solution employs a
special-purpose HandEvaluator object containing a
series of Recognizers. The StraightFlushRecognizer
specializes in recognizing straight flushes and encapsu
lates its own StraightRecognizer and FlushRecognizer.
The OfAKindRecognizer is used for two, three, or four
of a kind, and so on.

M COMPUTING 19

Actually, an alternative OOM solution is simpler in its
initial state. Instead of the Recognizer classes, it would
implement a HandEvaluator similar to the
$$WEIGHT function used by the procedural solution.
It might still need to divide this functionality up into
Recognizer classes later as reusability becomes more of
an issue. This is an example of "graceful evolution."

Game

Board Game Card Game

PokerGame

DrawPokerGame

FiveCardDrawPoker

Fig. 5. CardGame Class Hierarchy

Finally, this OOM solution anticipates the develop
ment of future related applications by creating a class,
CardGame, to store all the attributes and behavior
common to all card games; PokerGame, to hold every
thing common to all kinds of poker, and so on. The
class FiveCardDrawPokerGame inherits most of its
capabilities from superclasses-the class itself just
specifies the fact that there are five cards.

By now it should be obvious why there's a "design
bulge" in the early stages of object-oriented develop
ment. Next we'll see why this early investment is time
well spent.

Complexity Wall: Unexpected
Enhancements

How would these two designs fare if we tried to add the
following features?

Five or Seven Cards

Varying the number of cards is the least worrisome of
the changes. In the procedural version, the hand recog-

20 M COMPUTING

nition logic is generalized by using a FOR loop instead
of a more direct approach. The QOM version creates
a new class called SevenCardDrawPoker, specifying
seven cards instead of five.

Jacks are Wild

This certainly throws a wrench into the works in either
case. It is much harder to recognize a flush because a
jack-of-diamonds could be used as a spade to make the
flush work. It also raises the possibility of new winning
hands such as five-of-a-kind. A good solution takes
into account the possibility that other cards might one
day be wild. The OOM version benefits from built-in
reusability. For example, modifying the OfAKind
Recognizer would certainly have an impact on
FullHouseRecognizer and TwoPairRecognizer.

Other Poker Variants

Most procedural implementations will have real diffi
culties incorporating different variants of Poker
depending on how the code was originally written. In
my experience, most programmers will simply clone
code such as the $$WEIGHT function and customize it
for each different card game, thereby increasing future
maintenance burdens. Particularly industrious pro
grammers might try to abstract reduntiant functionality
out into reusable functions and subroutines. However,
even then it would not be surprising to find the same
functionality appearing repeatedly in different ways
throughout the system.

An exotic form of poker is much easier in an QOM
solution. A new class, HouseRulesPokerGame, is created
and positioned appropriately in the class hierarchy (see
Fig. 6). It is then necessary to promote and demote
certain capabilities of other classes: aspects of
DrawPoker that apply to all poker games might need to
be promoted to PokerGame, while aspects of PokerGame
that do not apply to HouseRulesPokerGame might need
to be demoted to DrawPokerGame. Promotion and
demotion are usually just a matter of moving things
higher and lower while generalizing or specializing the
way things are handled.

What would be different about HouseRules
PokerGame? It might be a matter of changing the
number of cards, the betting rules, the dealing/discard
ing procedures, or something about wild cards. It

May 1996

might be a matter ot actctmg and removmg Kecogmzers
within the HandEvaluator. In general, the changes will
not be too problematic because this is exactly the kind
of thing OOM is designed for.

Playing Blackjack or Go Fish

This enhancement brings us very close to the complexity
wall. The procedural poker game does not lend itself
to being reused for other card games in which the rules
and setup of the game are totally different. In most
cases, much of the functionality for these games would
have to be rewritten from scratch.

I Game I
I I

I BoardGame I I CardGame I
I

I I GoFishCardGame I I BettingCardGame I
·-:\ I

I

I BlackJackCardGame I I PokerGame I
I

I I

DrawPokerGame I I HouseRulesPokerGame I
I
I I

I FiveCardDrawPokerGame I SevenCardDrawPokerGame I
Fig. 6. CardGame Class Hierarchy

The OOM solution requires two enhancements:

1. Add the classes for GoFishCardGame and one for
BlackJackCardGame. Note that we have also added
BettingCardGame. Certain capabilities are demoted
from CardGame, others promoted from PokerGame.
Such class surgery is a snap in EsiObjects, because it's
all point-and-click.

2. Implement the changes for the new games. Both
games require new Recognizers, their own
HandEvaluators, and new procedures for dealing and
playing. But common aspects are inherited from
superclasses, so the QOM programmer only needs to
worry about the differences between each game. No
complexity wall is encountered.

May 1996

Summary

This example aptly illustrates the differences between
the two kinds of M. The traditional application is ini
tially easier to create, but starts to fall apart when
adding features and reusing code in new contexts. The
object-oriented solution takes longer to get off the
ground, but sails smoothly past the complexity wall.
Many organizations are now taking a long, hard look at
OOM because it offers these major advantages:

Encapsulation: Each object is entirely responsible for
its own state and behavior; thus, if there's a bug in the
way cards are dealt, it can only reside in the Dealer or
Deck objects.

Polymorphism: Related objects implement the same
behavior; in many cases, exactly the same code may be
used to interact with a BlackJackCardGame and a
HouseRulesPokerGame.

Inheritance: Code that is common to all forms of
poker can be stored in the class PokerGame, where it is
inherited by all subclasses. Anything at PokerGame,
that is not appropriate for any of its subclasses, may
instead be overridden (or deemed "private") at a lower
level.

Encapsulation enforces modularity and reduces prob
lematic dependencies between objects. Polymorphism
and inheritance enforce reusability. Of course, tradi
tional programming systems do not prevent one from
writing modular, independent, and reusable code, but
the features of OOM serve to extend such coding
efforts well beyond the Complexity Wall. M

Erik Zoltan is a freelance consultant who has been program
ming, writing and teaching in the M community for the last 6
years. He has also done extensive work with the EsiObjects
OOM programming system for ESI Technology Corp.

M COMPUTING 21

