
FEATURE ARTICLE

Integrating Object Technology with M:
Candid Answers to Commonly Asked Questions
by Terry L. Wiechmann, John A. McManamon and Jerry E. Goodnough

ESI Technology Corporation has devoted the last 5 years
to integrating Object Technology with M Technology.
Within that time frame, we've tried to share what we've
learned with the M community. By actually prototyping
our ideas and then sharing them with the MUMPS
Development Committee (MDC), a good 00 standard
has emerged for M. In keeping with this spirit, we would
like to share some questions we've received while giving
classes and presentations on Object Oriented Concepts
and Object Oriented M Programming.

Questions and Answers

Q: What is Object Technology?

A: Object Technology (OT) is the name used to describe
a methodology for organizing data and presenting infor
mation. First conceptualized in the early 1960's, in its
purest definition it represents an "alternate universe" to
relational technology. OT is being acknowledged as the
next major paradigm shift in Information Technology.
The term is used to encompass all aspects of Object
Orientation.

Q: What is an Object?

A: An Object is the basic conceptual building block of the
methodology. It is the atom of the Object universe.
Fundamentally, it is comparable to an M symbol table
where access to that data is only permitted through a
well-defined interface - riot directly.

Q: What is so special about Object Technology?

A: It is a proven way to manage the increasing cost of
developing, deploying, and supporting increasingly more
complex information systems. Object Technology not
only allows for applications to be developed faster, it also
reduces support time and problems.

Q: Isn't M already Object Oriented?

A: This is our favorite question. The answer is NO! There
are three fundamental concepts that must exist for a sys-

SO At COMPUTING

tern to be truly Object Oriented. First, the concept of
encapsulation must be enforced. Encapsulation means
that an object has a well-defined interface for exposing its
data to the outside. Second, the system must display poly
morphic behavior. Polymorphism (many forms) enables
common message names sent to different objects to elic
it totally different behavior. Third, objects must be able
to inherit properties, methods and events from their
ancestors. Inheritance means organizing object defini
tions into hierarchies and permitting properties and
behavior to be shared by an object's descendants.

Q: What does Object Orientation do for M?

A: In a word, it brings order to application development.
The programmer starts out with a well-defined, generic
structure and consequently, a common foundation. The
paradigm demands enforcement of its rules and features.
The results are applications that are all formed on a com
mon, well-defined foundation.

\;...

Q: How does Object Technology speed up application
development?

A: The answer can be given in two words: adaptation and
reuse. Initially adapting to 00 takes longer, mostly due
to the "unlearning" process, that is, making the transition
from traditional procedural thinking to Object Oriented
thinking. However, once the transition is made, you real
ize that the barriers you had to live with in procedural
programming have now largely disappeared. The world
you are trying to model and the environment you are
using to model it are now synchronized - an object is an
object!

Reuse is a well-advertised benefit of 00. If you start with
a development environment that offers Foundation and
Application Framework Classes (predefined object defi
nitions), you will benefit immediately through reuse and
consequently the development process will accelerate.
Good 00 development environments will offer features
that augment reuse, permitting the programmer to pro
gram for differences, not recreate the wheel.

March 1996

Q: How does Object Technology reduce support time and
problems?

A: The phrase "Objects know what they are and what
they can do" answers this question indirectly. Typical, tra
ditional M applications consist of data stored in global
arrays with a mountain of code that acts upon this data.
Casually examining the code of one of these systems will
reveal a commonly accepted organization of IF - ELSE
statements that often are asking "Who am I and what am
I doing now?" We all know that this code often springs
logical leaks and is the source of numerous support prob
lems.

Objects on the other hand, contain both the data and the
code that acts on that data. The object knows what it is
and what it can do! As a consequence, a great deal of
superfluous code disappears along with the incumbent
support problems.

Another phrase, "If you want something from me, go to
the front dooJ;,_ and ask!", offers another reason for
reduced support. Encapsulation means that an object's
data can only be accessed through a predefined interface
(the front door). Indiscriminately accessing data across
object boundaries is forbidden. Code (in the form of
methods, properties, and events) stands guard at the
door. Each method or event acts upon the data to display
some discretely defined behavior. Each property exposes
a piece of data to the caller. Because this code is localized
and discrete, bugs are confined to a very small space. The
famous "ripple effect" does not get very far - it is con
fined to the object's boundaries.

Q: I can do that now in M! Why should I go to Objects?

A: It's important to realize that 00 does not "computa
tionally" add any more power than traditional program
ming. Given a particular application developed in 00,
one can develop a similar application using current tech
niques. The question that needs to be asked is "What
about version two, three, and four?" What happens when
the system becomes extremely complex? Studies have
shown that most traditional approaches tend to fall apart
once complexity hits a certain level. 00 is proving to
push that barrier much farther out. 00 flattens out the
maintenance versus complexity curve.

Q: Isn't 00 just another way of saying Structured
Programming?

A: An important point to remember about 00 is this
"new" paradigm has retained the proven techniques of
the past. In addition to encouraging structured pro
gramming techniques, the infrastructure of a true 00
system incorporates structure. Additionally, the concept

March 1996

of hiding data (encapsulation) is enforced. However, 00
does not stop there, it adds the other necessary concepts
of polymorphic behavior and inheritance. A well
designed 00 environment offers a structure where a real
world model of an application can be designed in an intu
itive fashion.

Q: M is simple to use and I can prototype a system very
fast. Will I be giving that up?

A: No! In fact 00 augments those capabilities. Good 00
development environments contain libraries of reusable
objects, that is, Classes that define· objects. If you are
going to build a house, you shouldn't have to make the
bricks and cut the lumber before starting. Reusable
objects accelerate prototyping. Additionally, what could
be simpler than sending a message to an object and hav
ing it perform an operation.

On the other hand, if you are building the object defini
tions yourself, then in all honesty, it usually takes more
time to prototype a solution. 00 requires that more time
be spent in the Analysis and Design phase of develop
ment than traditional approaches. Fast prototyping has
all too often been used as a justification for ignoring
Analysis and Design.

Q: What makes M a good candidate for Object
Orientation?

A: M is a natural platform for Object Technology because
it shares some of the core features of an object system. M
is hierarchical and so is an object environment. M is fun
damentally interpretive, pushing decision making down
to runtime, an essential feature of objects. M has sup
ported persistence from the beginning, a required feature
of an object oriented database. So, in a very complemen
tary fashion, M technology has developed capabilities for
persistent objects, for dynamic binding, and for runtime
execution, which are all crucial requirements for a func
tioning Object environment. What it does not support is
the primitive object type, encapsulation, polymorphic
behavior and inheritance. The emerging QOM standard
lays a foundation for the addition of these features.

The questions and answers touched on above are typical.
We hope we have answered them to your satisfaction.

Terry L. Wiechmann is President of ESI Technology Corporation,
John A. McManarnon and Jerry E. Goodnough are the principal
architects and implementors of EsiObjects, ESI's Object Oriented M
product.

M COMPUTING 51

